How curves on the universal covering plane that cover nonselfintersecting curves on a closed surface can go to infinity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Statistical mechanics and the theory of dynamical systems, Tome 191 (1989), pp. 34-44
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{TM_1989_191_a2,
author = {D. V. Anosov},
title = {How curves on the universal covering plane that cover nonselfintersecting curves on a~closed surface can go to infinity},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {34--44},
year = {1989},
volume = {191},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_1989_191_a2/}
}
TY - JOUR AU - D. V. Anosov TI - How curves on the universal covering plane that cover nonselfintersecting curves on a closed surface can go to infinity JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1989 SP - 34 EP - 44 VL - 191 UR - http://geodesic.mathdoc.fr/item/TM_1989_191_a2/ LA - ru ID - TM_1989_191_a2 ER -
%0 Journal Article %A D. V. Anosov %T How curves on the universal covering plane that cover nonselfintersecting curves on a closed surface can go to infinity %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1989 %P 34-44 %V 191 %U http://geodesic.mathdoc.fr/item/TM_1989_191_a2/ %G ru %F TM_1989_191_a2
D. V. Anosov. How curves on the universal covering plane that cover nonselfintersecting curves on a closed surface can go to infinity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Statistical mechanics and the theory of dynamical systems, Tome 191 (1989), pp. 34-44. http://geodesic.mathdoc.fr/item/TM_1989_191_a2/