Estimates for the best bilinear approximations of periodic functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations in the theory of differentiable functions of many variables and its applications. Part 12, Tome 181 (1988), pp. 250-267
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TM_1988_181_a15,
     author = {V. N. Temlyakov},
     title = {Estimates for the best bilinear approximations of periodic functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {250--267},
     year = {1988},
     volume = {181},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1988_181_a15/}
}
TY  - JOUR
AU  - V. N. Temlyakov
TI  - Estimates for the best bilinear approximations of periodic functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1988
SP  - 250
EP  - 267
VL  - 181
UR  - http://geodesic.mathdoc.fr/item/TM_1988_181_a15/
LA  - ru
ID  - TM_1988_181_a15
ER  - 
%0 Journal Article
%A V. N. Temlyakov
%T Estimates for the best bilinear approximations of periodic functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1988
%P 250-267
%V 181
%U http://geodesic.mathdoc.fr/item/TM_1988_181_a15/
%G ru
%F TM_1988_181_a15
V. N. Temlyakov. Estimates for the best bilinear approximations of periodic functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations in the theory of differentiable functions of many variables and its applications. Part 12, Tome 181 (1988), pp. 250-267. http://geodesic.mathdoc.fr/item/TM_1988_181_a15/