The conjugate Franklin system is a~basis in the space of continuous functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Theory of functions and related questions of analysis, Tome 180 (1987), pp. 58-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_1987_180_a27,
     author = {S. V. Bochkarev},
     title = {The conjugate {Franklin} system is a~basis in the space of continuous functions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {58--59},
     publisher = {mathdoc},
     volume = {180},
     year = {1987},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1987_180_a27/}
}
TY  - JOUR
AU  - S. V. Bochkarev
TI  - The conjugate Franklin system is a~basis in the space of continuous functions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1987
SP  - 58
EP  - 59
VL  - 180
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1987_180_a27/
LA  - ru
ID  - TM_1987_180_a27
ER  - 
%0 Journal Article
%A S. V. Bochkarev
%T The conjugate Franklin system is a~basis in the space of continuous functions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1987
%P 58-59
%V 180
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1987_180_a27/
%G ru
%F TM_1987_180_a27
S. V. Bochkarev. The conjugate Franklin system is a~basis in the space of continuous functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Theory of functions and related questions of analysis, Tome 180 (1987), pp. 58-59. http://geodesic.mathdoc.fr/item/TM_1987_180_a27/