On a criterion for an element of best $(\alpha,\beta)$-approximation in the space of summable functions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Theory of functions and related questions of analysis, Tome 180 (1987), pp. 201-202
Voir la notice du chapitre de livre
@article{TM_1987_180_a122,
author = {G. S. Smirnov},
title = {On a~criterion for an element of best $(\alpha,\beta)$-approximation in the space of summable functions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {201--202},
year = {1987},
volume = {180},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_1987_180_a122/}
}
TY - JOUR AU - G. S. Smirnov TI - On a criterion for an element of best $(\alpha,\beta)$-approximation in the space of summable functions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1987 SP - 201 EP - 202 VL - 180 UR - http://geodesic.mathdoc.fr/item/TM_1987_180_a122/ LA - ru ID - TM_1987_180_a122 ER -
%0 Journal Article %A G. S. Smirnov %T On a criterion for an element of best $(\alpha,\beta)$-approximation in the space of summable functions %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1987 %P 201-202 %V 180 %U http://geodesic.mathdoc.fr/item/TM_1987_180_a122/ %G ru %F TM_1987_180_a122
G. S. Smirnov. On a criterion for an element of best $(\alpha,\beta)$-approximation in the space of summable functions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Theory of functions and related questions of analysis, Tome 180 (1987), pp. 201-202. http://geodesic.mathdoc.fr/item/TM_1987_180_a122/