An asymptotically fast approximate method of finding a~solution of the difference Laplace equation on mesh segments
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations in the theory of differentiable functions of many variables and its applications. Part 11, Tome 173 (1986), pp. 69-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_1986_173_a6,
     author = {E. A. Volkov},
     title = {An asymptotically fast approximate method of finding a~solution of the difference {Laplace} equation on mesh segments},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {69--89},
     publisher = {mathdoc},
     volume = {173},
     year = {1986},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1986_173_a6/}
}
TY  - JOUR
AU  - E. A. Volkov
TI  - An asymptotically fast approximate method of finding a~solution of the difference Laplace equation on mesh segments
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1986
SP  - 69
EP  - 89
VL  - 173
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1986_173_a6/
LA  - ru
ID  - TM_1986_173_a6
ER  - 
%0 Journal Article
%A E. A. Volkov
%T An asymptotically fast approximate method of finding a~solution of the difference Laplace equation on mesh segments
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1986
%P 69-89
%V 173
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1986_173_a6/
%G ru
%F TM_1986_173_a6
E. A. Volkov. An asymptotically fast approximate method of finding a~solution of the difference Laplace equation on mesh segments. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations in the theory of differentiable functions of many variables and its applications. Part 11, Tome 173 (1986), pp. 69-89. http://geodesic.mathdoc.fr/item/TM_1986_173_a6/