An approximate method of conformal mapping of multiply connected polygons onto canonical domains
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations in the theory of differentiable functions of many variables and its applications. Part 11, Tome 173 (1986), pp. 55-68
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TM_1986_173_a5,
     author = {E. A. Volkov},
     title = {An approximate method of conformal mapping of multiply connected polygons onto canonical domains},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {55--68},
     year = {1986},
     volume = {173},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1986_173_a5/}
}
TY  - JOUR
AU  - E. A. Volkov
TI  - An approximate method of conformal mapping of multiply connected polygons onto canonical domains
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1986
SP  - 55
EP  - 68
VL  - 173
UR  - http://geodesic.mathdoc.fr/item/TM_1986_173_a5/
LA  - ru
ID  - TM_1986_173_a5
ER  - 
%0 Journal Article
%A E. A. Volkov
%T An approximate method of conformal mapping of multiply connected polygons onto canonical domains
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1986
%P 55-68
%V 173
%U http://geodesic.mathdoc.fr/item/TM_1986_173_a5/
%G ru
%F TM_1986_173_a5
E. A. Volkov. An approximate method of conformal mapping of multiply connected polygons onto canonical domains. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations in the theory of differentiable functions of many variables and its applications. Part 11, Tome 173 (1986), pp. 55-68. http://geodesic.mathdoc.fr/item/TM_1986_173_a5/