An exponentially converging method for the Neumann problem on multiply connected polygons
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations on the theory of functions of several real variables and approximation of functons, Tome 172 (1985), pp. 86-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_1985_172_a6,
     author = {E. A. Volkov},
     title = {An exponentially converging method for the {Neumann} problem on multiply connected polygons},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {86--106},
     publisher = {mathdoc},
     volume = {172},
     year = {1985},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1985_172_a6/}
}
TY  - JOUR
AU  - E. A. Volkov
TI  - An exponentially converging method for the Neumann problem on multiply connected polygons
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1985
SP  - 86
EP  - 106
VL  - 172
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1985_172_a6/
LA  - ru
ID  - TM_1985_172_a6
ER  - 
%0 Journal Article
%A E. A. Volkov
%T An exponentially converging method for the Neumann problem on multiply connected polygons
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1985
%P 86-106
%V 172
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1985_172_a6/
%G ru
%F TM_1985_172_a6
E. A. Volkov. An exponentially converging method for the Neumann problem on multiply connected polygons. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations on the theory of functions of several real variables and approximation of functons, Tome 172 (1985), pp. 86-106. http://geodesic.mathdoc.fr/item/TM_1985_172_a6/