An exponentially converging method for the Neumann problem on multiply connected polygons
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations on the theory of functions of several real variables and approximation of functons, Tome 172 (1985), pp. 86-106
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{TM_1985_172_a6,
author = {E. A. Volkov},
title = {An exponentially converging method for the {Neumann} problem on multiply connected polygons},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {86--106},
year = {1985},
volume = {172},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_1985_172_a6/}
}
TY - JOUR AU - E. A. Volkov TI - An exponentially converging method for the Neumann problem on multiply connected polygons JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1985 SP - 86 EP - 106 VL - 172 UR - http://geodesic.mathdoc.fr/item/TM_1985_172_a6/ LA - ru ID - TM_1985_172_a6 ER -
E. A. Volkov. An exponentially converging method for the Neumann problem on multiply connected polygons. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations on the theory of functions of several real variables and approximation of functons, Tome 172 (1985), pp. 86-106. http://geodesic.mathdoc.fr/item/TM_1985_172_a6/