The virial theorem and conditions for wave operators to be unitary in scattering by a~nonstationary potential
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Boundary value problems of mathematical physics. Part 12, Tome 159 (1983), pp. 210-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_1983_159_a13,
     author = {D. R. Yafaev},
     title = {The virial theorem and conditions for wave operators to be unitary in scattering by a~nonstationary potential},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {210--217},
     publisher = {mathdoc},
     volume = {159},
     year = {1983},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1983_159_a13/}
}
TY  - JOUR
AU  - D. R. Yafaev
TI  - The virial theorem and conditions for wave operators to be unitary in scattering by a~nonstationary potential
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1983
SP  - 210
EP  - 217
VL  - 159
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1983_159_a13/
LA  - ru
ID  - TM_1983_159_a13
ER  - 
%0 Journal Article
%A D. R. Yafaev
%T The virial theorem and conditions for wave operators to be unitary in scattering by a~nonstationary potential
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1983
%P 210-217
%V 159
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1983_159_a13/
%G ru
%F TM_1983_159_a13
D. R. Yafaev. The virial theorem and conditions for wave operators to be unitary in scattering by a~nonstationary potential. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Boundary value problems of mathematical physics. Part 12, Tome 159 (1983), pp. 210-217. http://geodesic.mathdoc.fr/item/TM_1983_159_a13/