The virial theorem and conditions for wave operators to be unitary in scattering by a nonstationary potential
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Boundary value problems of mathematical physics. Part 12, Tome 159 (1983), pp. 210-217
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{TM_1983_159_a13,
author = {D. R. Yafaev},
title = {The virial theorem and conditions for wave operators to be unitary in scattering by a~nonstationary potential},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {210--217},
year = {1983},
volume = {159},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_1983_159_a13/}
}
TY - JOUR AU - D. R. Yafaev TI - The virial theorem and conditions for wave operators to be unitary in scattering by a nonstationary potential JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1983 SP - 210 EP - 217 VL - 159 UR - http://geodesic.mathdoc.fr/item/TM_1983_159_a13/ LA - ru ID - TM_1983_159_a13 ER -
%0 Journal Article %A D. R. Yafaev %T The virial theorem and conditions for wave operators to be unitary in scattering by a nonstationary potential %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1983 %P 210-217 %V 159 %U http://geodesic.mathdoc.fr/item/TM_1983_159_a13/ %G ru %F TM_1983_159_a13
D. R. Yafaev. The virial theorem and conditions for wave operators to be unitary in scattering by a nonstationary potential. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Boundary value problems of mathematical physics. Part 12, Tome 159 (1983), pp. 210-217. http://geodesic.mathdoc.fr/item/TM_1983_159_a13/