An efficient cubic mesh method for solving Laplace's equation on a parallelepiped under discontinuous boundary conditions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations in the theory of differentiable functions of many variables and its applications. Part 8, Tome 156 (1980), pp. 30-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TM_1980_156_a4,
     author = {E. A. Volkov},
     title = {An efficient cubic mesh method for solving {Laplace's} equation on a~parallelepiped under discontinuous boundary conditions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {30--46},
     year = {1980},
     volume = {156},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1980_156_a4/}
}
TY  - JOUR
AU  - E. A. Volkov
TI  - An efficient cubic mesh method for solving Laplace's equation on a parallelepiped under discontinuous boundary conditions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1980
SP  - 30
EP  - 46
VL  - 156
UR  - http://geodesic.mathdoc.fr/item/TM_1980_156_a4/
LA  - ru
ID  - TM_1980_156_a4
ER  - 
%0 Journal Article
%A E. A. Volkov
%T An efficient cubic mesh method for solving Laplace's equation on a parallelepiped under discontinuous boundary conditions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1980
%P 30-46
%V 156
%U http://geodesic.mathdoc.fr/item/TM_1980_156_a4/
%G ru
%F TM_1980_156_a4
E. A. Volkov. An efficient cubic mesh method for solving Laplace's equation on a parallelepiped under discontinuous boundary conditions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations in the theory of differentiable functions of many variables and its applications. Part 8, Tome 156 (1980), pp. 30-46. http://geodesic.mathdoc.fr/item/TM_1980_156_a4/