An efficient cubic mesh method for solving Laplace's equation on a parallelepiped under discontinuous boundary conditions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations in the theory of differentiable functions of many variables and its applications. Part 8, Tome 156 (1980), pp. 30-46
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{TM_1980_156_a4,
author = {E. A. Volkov},
title = {An efficient cubic mesh method for solving {Laplace's} equation on a~parallelepiped under discontinuous boundary conditions},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {30--46},
year = {1980},
volume = {156},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_1980_156_a4/}
}
TY - JOUR AU - E. A. Volkov TI - An efficient cubic mesh method for solving Laplace's equation on a parallelepiped under discontinuous boundary conditions JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1980 SP - 30 EP - 46 VL - 156 UR - http://geodesic.mathdoc.fr/item/TM_1980_156_a4/ LA - ru ID - TM_1980_156_a4 ER -
%0 Journal Article %A E. A. Volkov %T An efficient cubic mesh method for solving Laplace's equation on a parallelepiped under discontinuous boundary conditions %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1980 %P 30-46 %V 156 %U http://geodesic.mathdoc.fr/item/TM_1980_156_a4/ %G ru %F TM_1980_156_a4
E. A. Volkov. An efficient cubic mesh method for solving Laplace's equation on a parallelepiped under discontinuous boundary conditions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Investigations in the theory of differentiable functions of many variables and its applications. Part 8, Tome 156 (1980), pp. 30-46. http://geodesic.mathdoc.fr/item/TM_1980_156_a4/