Noncompact three-dimensional manifolds of constant negative curvature that have finite measure
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry of positive quadratic forms, Tome 152 (1980), pp. 165-169
Voir la notice du chapitre de livre
@article{TM_1980_152_a9,
author = {V. S. Makarov and I. S. Gutsul},
title = {Noncompact three-dimensional manifolds of constant negative curvature that have finite measure},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {165--169},
year = {1980},
volume = {152},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_1980_152_a9/}
}
TY - JOUR AU - V. S. Makarov AU - I. S. Gutsul TI - Noncompact three-dimensional manifolds of constant negative curvature that have finite measure JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1980 SP - 165 EP - 169 VL - 152 UR - http://geodesic.mathdoc.fr/item/TM_1980_152_a9/ LA - ru ID - TM_1980_152_a9 ER -
%0 Journal Article %A V. S. Makarov %A I. S. Gutsul %T Noncompact three-dimensional manifolds of constant negative curvature that have finite measure %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1980 %P 165-169 %V 152 %U http://geodesic.mathdoc.fr/item/TM_1980_152_a9/ %G ru %F TM_1980_152_a9
V. S. Makarov; I. S. Gutsul. Noncompact three-dimensional manifolds of constant negative curvature that have finite measure. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Geometry of positive quadratic forms, Tome 152 (1980), pp. 165-169. http://geodesic.mathdoc.fr/item/TM_1980_152_a9/