Optimal methods for calculating values of the operator $Ux$ if $x$~is given with an error. Differentiation of functions defined with an error
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation of functions by polynomials and splines, Tome 145 (1980), pp. 63-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_1980_145_a2,
     author = {V. N. Gabushin},
     title = {Optimal methods for calculating values of the operator $Ux$ if $x$~is given with an error. {Differentiation} of functions defined with an error},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {63--78},
     publisher = {mathdoc},
     volume = {145},
     year = {1980},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1980_145_a2/}
}
TY  - JOUR
AU  - V. N. Gabushin
TI  - Optimal methods for calculating values of the operator $Ux$ if $x$~is given with an error. Differentiation of functions defined with an error
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1980
SP  - 63
EP  - 78
VL  - 145
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1980_145_a2/
LA  - ru
ID  - TM_1980_145_a2
ER  - 
%0 Journal Article
%A V. N. Gabushin
%T Optimal methods for calculating values of the operator $Ux$ if $x$~is given with an error. Differentiation of functions defined with an error
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1980
%P 63-78
%V 145
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1980_145_a2/
%G ru
%F TM_1980_145_a2
V. N. Gabushin. Optimal methods for calculating values of the operator $Ux$ if $x$~is given with an error. Differentiation of functions defined with an error. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation of functions by polynomials and splines, Tome 145 (1980), pp. 63-78. http://geodesic.mathdoc.fr/item/TM_1980_145_a2/