Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TM_1980_145_a2, author = {V. N. Gabushin}, title = {Optimal methods for calculating values of the operator $Ux$ if $x$~is given with an error. {Differentiation} of functions defined with an error}, journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova}, pages = {63--78}, publisher = {mathdoc}, volume = {145}, year = {1980}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/TM_1980_145_a2/} }
TY - JOUR AU - V. N. Gabushin TI - Optimal methods for calculating values of the operator $Ux$ if $x$~is given with an error. Differentiation of functions defined with an error JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1980 SP - 63 EP - 78 VL - 145 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TM_1980_145_a2/ LA - ru ID - TM_1980_145_a2 ER -
%0 Journal Article %A V. N. Gabushin %T Optimal methods for calculating values of the operator $Ux$ if $x$~is given with an error. Differentiation of functions defined with an error %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1980 %P 63-78 %V 145 %I mathdoc %U http://geodesic.mathdoc.fr/item/TM_1980_145_a2/ %G ru %F TM_1980_145_a2
V. N. Gabushin. Optimal methods for calculating values of the operator $Ux$ if $x$~is given with an error. Differentiation of functions defined with an error. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Approximation of functions by polynomials and splines, Tome 145 (1980), pp. 63-78. http://geodesic.mathdoc.fr/item/TM_1980_145_a2/