A~new variant of the proof of the inhomogeneous Minkowski conjecture for $n=5$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, mathematical analysis and their applications, Tome 142 (1976), pp. 240-253.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_1976_142_a18,
     author = {B. F. Skubenko},
     title = {A~new variant of the proof of the inhomogeneous {Minkowski} conjecture for $n=5$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {240--253},
     publisher = {mathdoc},
     volume = {142},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1976_142_a18/}
}
TY  - JOUR
AU  - B. F. Skubenko
TI  - A~new variant of the proof of the inhomogeneous Minkowski conjecture for $n=5$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1976
SP  - 240
EP  - 253
VL  - 142
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1976_142_a18/
LA  - ru
ID  - TM_1976_142_a18
ER  - 
%0 Journal Article
%A B. F. Skubenko
%T A~new variant of the proof of the inhomogeneous Minkowski conjecture for $n=5$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1976
%P 240-253
%V 142
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1976_142_a18/
%G ru
%F TM_1976_142_a18
B. F. Skubenko. A~new variant of the proof of the inhomogeneous Minkowski conjecture for $n=5$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, mathematical analysis and their applications, Tome 142 (1976), pp. 240-253. http://geodesic.mathdoc.fr/item/TM_1976_142_a18/