The principal term of the divisor problem and the power series of the Riemann zeta-function in a neighborhood of a pole
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, mathematical analysis and their applications, Tome 142 (1976), pp. 165-173
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{TM_1976_142_a11,
author = {A. F. Lavrik},
title = {The principal term of the divisor problem and the power series of the {Riemann} zeta-function in a~neighborhood of a~pole},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {165--173},
year = {1976},
volume = {142},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_1976_142_a11/}
}
TY - JOUR AU - A. F. Lavrik TI - The principal term of the divisor problem and the power series of the Riemann zeta-function in a neighborhood of a pole JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1976 SP - 165 EP - 173 VL - 142 UR - http://geodesic.mathdoc.fr/item/TM_1976_142_a11/ LA - ru ID - TM_1976_142_a11 ER -
%0 Journal Article %A A. F. Lavrik %T The principal term of the divisor problem and the power series of the Riemann zeta-function in a neighborhood of a pole %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1976 %P 165-173 %V 142 %U http://geodesic.mathdoc.fr/item/TM_1976_142_a11/ %G ru %F TM_1976_142_a11
A. F. Lavrik. The principal term of the divisor problem and the power series of the Riemann zeta-function in a neighborhood of a pole. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Number theory, mathematical analysis and their applications, Tome 142 (1976), pp. 165-173. http://geodesic.mathdoc.fr/item/TM_1976_142_a11/