Equivalence properties of coherent superselection sectors and description of physical symmetries in algebraic axiomatic theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, International Conference on Mathematical Problems of Quantum Field Theory and Quantum Statistics. Part I. Axiomatic quantum field theory, Tome 135 (1975), pp. 127-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_1975_135_a13,
     author = {Yu. M. Zinoviev and V. N. Sushko and S. S. Horuzhy},
     title = {Equivalence properties of coherent superselection sectors and description of physical symmetries in algebraic axiomatic theory},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {127--136},
     publisher = {mathdoc},
     volume = {135},
     year = {1975},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TM_1975_135_a13/}
}
TY  - JOUR
AU  - Yu. M. Zinoviev
AU  - V. N. Sushko
AU  - S. S. Horuzhy
TI  - Equivalence properties of coherent superselection sectors and description of physical symmetries in algebraic axiomatic theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1975
SP  - 127
EP  - 136
VL  - 135
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1975_135_a13/
LA  - en
ID  - TM_1975_135_a13
ER  - 
%0 Journal Article
%A Yu. M. Zinoviev
%A V. N. Sushko
%A S. S. Horuzhy
%T Equivalence properties of coherent superselection sectors and description of physical symmetries in algebraic axiomatic theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1975
%P 127-136
%V 135
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1975_135_a13/
%G en
%F TM_1975_135_a13
Yu. M. Zinoviev; V. N. Sushko; S. S. Horuzhy. Equivalence properties of coherent superselection sectors and description of physical symmetries in algebraic axiomatic theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, International Conference on Mathematical Problems of Quantum Field Theory and Quantum Statistics. Part I. Axiomatic quantum field theory, Tome 135 (1975), pp. 127-136. http://geodesic.mathdoc.fr/item/TM_1975_135_a13/