A certain formal method of obtaining the short wave asymptotic properties of the Green's function
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical aspects of the theory of diffraction and distribution of waves. Part 1, Tome 115 (1971), pp. 10-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TM_1971_115_a1,
     author = {V. M. Babich},
     title = {A certain formal method of obtaining the short wave asymptotic properties of the {Green's} function},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {10--13},
     year = {1971},
     volume = {115},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1971_115_a1/}
}
TY  - JOUR
AU  - V. M. Babich
TI  - A certain formal method of obtaining the short wave asymptotic properties of the Green's function
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1971
SP  - 10
EP  - 13
VL  - 115
UR  - http://geodesic.mathdoc.fr/item/TM_1971_115_a1/
LA  - ru
ID  - TM_1971_115_a1
ER  - 
%0 Journal Article
%A V. M. Babich
%T A certain formal method of obtaining the short wave asymptotic properties of the Green's function
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1971
%P 10-13
%V 115
%U http://geodesic.mathdoc.fr/item/TM_1971_115_a1/
%G ru
%F TM_1971_115_a1
V. M. Babich. A certain formal method of obtaining the short wave asymptotic properties of the Green's function. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Mathematical aspects of the theory of diffraction and distribution of waves. Part 1, Tome 115 (1971), pp. 10-13. http://geodesic.mathdoc.fr/item/TM_1971_115_a1/