An estimate of the norm of a function by its Fourier coefficients that is suitable in problems of approximation theory
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Приближение периодических функций, Tome 109 (1971), pp. 65-97.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_1971_109_a5,
     author = {S. A. Telyakovskii},
     title = {An estimate of the norm of a function by its {Fourier} coefficients that is suitable in problems of approximation theory},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {65--97},
     publisher = {mathdoc},
     volume = {109},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1971_109_a5/}
}
TY  - JOUR
AU  - S. A. Telyakovskii
TI  - An estimate of the norm of a function by its Fourier coefficients that is suitable in problems of approximation theory
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1971
SP  - 65
EP  - 97
VL  - 109
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1971_109_a5/
LA  - ru
ID  - TM_1971_109_a5
ER  - 
%0 Journal Article
%A S. A. Telyakovskii
%T An estimate of the norm of a function by its Fourier coefficients that is suitable in problems of approximation theory
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1971
%P 65-97
%V 109
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1971_109_a5/
%G ru
%F TM_1971_109_a5
S. A. Telyakovskii. An estimate of the norm of a function by its Fourier coefficients that is suitable in problems of approximation theory. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Приближение периодических функций, Tome 109 (1971), pp. 65-97. http://geodesic.mathdoc.fr/item/TM_1971_109_a5/