The method of areas for schlicht functions in finitely connected domains
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Extremal problems of the geometric theory of functions, Tome 94 (1968), pp. 90-122.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_1968_94_a8,
     author = {I. M. Milin},
     title = {The method of areas for schlicht functions in finitely connected domains},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {90--122},
     publisher = {mathdoc},
     volume = {94},
     year = {1968},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1968_94_a8/}
}
TY  - JOUR
AU  - I. M. Milin
TI  - The method of areas for schlicht functions in finitely connected domains
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1968
SP  - 90
EP  - 122
VL  - 94
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1968_94_a8/
LA  - ru
ID  - TM_1968_94_a8
ER  - 
%0 Journal Article
%A I. M. Milin
%T The method of areas for schlicht functions in finitely connected domains
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1968
%P 90-122
%V 94
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1968_94_a8/
%G ru
%F TM_1968_94_a8
I. M. Milin. The method of areas for schlicht functions in finitely connected domains. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Extremal problems of the geometric theory of functions, Tome 94 (1968), pp. 90-122. http://geodesic.mathdoc.fr/item/TM_1968_94_a8/