A certain space of functions whose first derivatives in variable directions are $p$th-power integrable
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Boundary value problems for differential equations. Part II, Tome 103 (1968), pp. 96-116
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{TM_1968_103_a6,
author = {L. P. Kuptsov},
title = {A certain space of functions whose first derivatives in variable directions are $p$th-power integrable},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {96--116},
year = {1968},
volume = {103},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_1968_103_a6/}
}
TY - JOUR AU - L. P. Kuptsov TI - A certain space of functions whose first derivatives in variable directions are $p$th-power integrable JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1968 SP - 96 EP - 116 VL - 103 UR - http://geodesic.mathdoc.fr/item/TM_1968_103_a6/ LA - ru ID - TM_1968_103_a6 ER -
L. P. Kuptsov. A certain space of functions whose first derivatives in variable directions are $p$th-power integrable. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Boundary value problems for differential equations. Part II, Tome 103 (1968), pp. 96-116. http://geodesic.mathdoc.fr/item/TM_1968_103_a6/