On rational points on the curve $y^2=x(x^2+ax+b)$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic number theory and representations, Tome 80 (1965), pp. 110-116

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_1965_80_a10,
     author = {S. V. Ogaǐ},
     title = {On rational points on the curve $y^2=x(x^2+ax+b)$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {110--116},
     publisher = {mathdoc},
     volume = {80},
     year = {1965},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1965_80_a10/}
}
TY  - JOUR
AU  - S. V. Ogaǐ
TI  - On rational points on the curve $y^2=x(x^2+ax+b)$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1965
SP  - 110
EP  - 116
VL  - 80
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1965_80_a10/
LA  - ru
ID  - TM_1965_80_a10
ER  - 
%0 Journal Article
%A S. V. Ogaǐ
%T On rational points on the curve $y^2=x(x^2+ax+b)$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1965
%P 110-116
%V 80
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1965_80_a10/
%G ru
%F TM_1965_80_a10
S. V. Ogaǐ. On rational points on the curve $y^2=x(x^2+ax+b)$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Algebraic number theory and representations, Tome 80 (1965), pp. 110-116. http://geodesic.mathdoc.fr/item/TM_1965_80_a10/