The isoperimetric problem and extimates of the length of a curve on a surface
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Two-dimensional manifolds of bounded curvature. Part II. Collection of articles on the intrinsic geometry of surfaces, Tome 76 (1965), pp. 67-80
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{TM_1965_76_a5,
author = {A. D. Aleksandrov and V. V. Strel'cov},
title = {The isoperimetric problem and extimates of the length of a~curve on a~surface},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
pages = {67--80},
year = {1965},
volume = {76},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TM_1965_76_a5/}
}
TY - JOUR AU - A. D. Aleksandrov AU - V. V. Strel'cov TI - The isoperimetric problem and extimates of the length of a curve on a surface JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1965 SP - 67 EP - 80 VL - 76 UR - http://geodesic.mathdoc.fr/item/TM_1965_76_a5/ LA - ru ID - TM_1965_76_a5 ER -
A. D. Aleksandrov; V. V. Strel'cov. The isoperimetric problem and extimates of the length of a curve on a surface. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Two-dimensional manifolds of bounded curvature. Part II. Collection of articles on the intrinsic geometry of surfaces, Tome 76 (1965), pp. 67-80. http://geodesic.mathdoc.fr/item/TM_1965_76_a5/