Interpolation of the highest order of accuracy in the problem of indefinite integration
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Trudy Matematicheskogo Instituta imeni V. A. Steklova, Tome 38 (1951), pp. 97-145
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TM_1951_38_a9,
     author = {V. I. Krylov},
     title = {Interpolation of the highest order of accuracy in the problem of indefinite integration},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {97--145},
     year = {1951},
     volume = {38},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1951_38_a9/}
}
TY  - JOUR
AU  - V. I. Krylov
TI  - Interpolation of the highest order of accuracy in the problem of indefinite integration
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1951
SP  - 97
EP  - 145
VL  - 38
UR  - http://geodesic.mathdoc.fr/item/TM_1951_38_a9/
LA  - ru
ID  - TM_1951_38_a9
ER  - 
%0 Journal Article
%A V. I. Krylov
%T Interpolation of the highest order of accuracy in the problem of indefinite integration
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1951
%P 97-145
%V 38
%U http://geodesic.mathdoc.fr/item/TM_1951_38_a9/
%G ru
%F TM_1951_38_a9
V. I. Krylov. Interpolation of the highest order of accuracy in the problem of indefinite integration. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Trudy Matematicheskogo Instituta imeni V. A. Steklova, Tome 38 (1951), pp. 97-145. http://geodesic.mathdoc.fr/item/TM_1951_38_a9/