Application of the Euler-Laplace formula to approximate solution of integral equations of Volterra type
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Collected works on approximation analysis of the Leningrad Branch of the Institute, Tome 28 (1949), pp. 33-72

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TM_1949_28_a2,
     author = {V. I. Krylov},
     title = {Application of the {Euler-Laplace} formula to approximate solution of integral equations of {Volterra} type},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {33--72},
     publisher = {mathdoc},
     volume = {28},
     year = {1949},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TM_1949_28_a2/}
}
TY  - JOUR
AU  - V. I. Krylov
TI  - Application of the Euler-Laplace formula to approximate solution of integral equations of Volterra type
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1949
SP  - 33
EP  - 72
VL  - 28
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TM_1949_28_a2/
LA  - ru
ID  - TM_1949_28_a2
ER  - 
%0 Journal Article
%A V. I. Krylov
%T Application of the Euler-Laplace formula to approximate solution of integral equations of Volterra type
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1949
%P 33-72
%V 28
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TM_1949_28_a2/
%G ru
%F TM_1949_28_a2
V. I. Krylov. Application of the Euler-Laplace formula to approximate solution of integral equations of Volterra type. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Collected works on approximation analysis of the Leningrad Branch of the Institute, Tome 28 (1949), pp. 33-72. http://geodesic.mathdoc.fr/item/TM_1949_28_a2/