Geometry and probability on the noncommutative $2$-torus in a magnetic field
Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 2, pp. 377-395 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe the geometric and probabilistic properties of a noncommutative $2$-torus in a magnetic field. We study the volume invariance, integrated scalar curvature, and the volume form by using the operator method of perturbation by an inner derivation of the magnetic Laplacian operator on the noncommutative $2$-torus. We then analyze the magnetic stochastic process describing the motion of a particle subject to a uniform magnetic field on the noncommutative $2$-torus, and discuss the related main properties.
Keywords: noncommutative $2$-torus, magnetic Laplacian, quantum stochastic process.
@article{TMF_2024_220_2_a9,
     author = {M. N. Hounkonnou and F. Melong},
     title = {Geometry and probability on the~noncommutative $2$-torus in a~magnetic field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {377--395},
     year = {2024},
     volume = {220},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a9/}
}
TY  - JOUR
AU  - M. N. Hounkonnou
AU  - F. Melong
TI  - Geometry and probability on the noncommutative $2$-torus in a magnetic field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 377
EP  - 395
VL  - 220
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a9/
LA  - ru
ID  - TMF_2024_220_2_a9
ER  - 
%0 Journal Article
%A M. N. Hounkonnou
%A F. Melong
%T Geometry and probability on the noncommutative $2$-torus in a magnetic field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 377-395
%V 220
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a9/
%G ru
%F TMF_2024_220_2_a9
M. N. Hounkonnou; F. Melong. Geometry and probability on the noncommutative $2$-torus in a magnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 2, pp. 377-395. http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a9/

[1] L. G. Brown, R. G. Douglas, P. A. Fillmore, “Extensions of $C^*$-algebras and $K$-homology”, Ann. Math. (2), 105:2 (1977), 265–324 | DOI | MR

[2] A. Connes, Noncommutative Geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl

[3] J. Ben Geloun, M. N. Hounkonnou, F. Massamba, “Moyal algebra: relevant properties, projective limits and applications in noncommutative field theory”, SUT J. Math, 44:1, 55–88 | MR

[4] M. N. Hounkonnou, F. Massamba, J. Ben Geloun, “Two-dimensional noncommutative field theory on the light cone”, J. Geom. Symmetry Phys., 6 (2006), 38–46 | MR

[5] P. Kruszyński, S. L. Woronowicz, “A noncommutative Gelfand–Naimark theorem”, J. Operator Theory, 8:2 (1982), 361–389 | MR

[6] M. Khalkhali, Basic Noncommutative Geometry, EMS Series of Lectures in Mathematics, EMS, Zürich, 2009 | MR

[7] K. B. Sinha, “Noncommutative geometry, probability and quantum mechanics”, Proceedings of the 8th International Workshop on Contemporary Problems in Mathematical Physics (Cotonou, Bénin, November 2–8, 2013), World Sci., Singapore, 135–179

[8] M. Sakamoto, S. Tanimura, “An extension of Fourier analysis for the $n$-torus in the magnetic field and its application to spectral analysis of the magnetic Laplacian”, J. Math. Phys., 44:11 (2003), 5042–5069 | DOI | MR

[9] P. S. Chakraborty, D. Goswami, K. B. Sinha, “Probability and geometry on some noncommutative manifolds”, J. Operator Theory, 49:1 (2003), 185–201 | MR

[10] M. A. Rieffel, “Noncommutative tori – a case study of noncommutative differentiable manifolds”, Geometric and Topological Invariants of Elliptic Operators, Contemporary Mathematics, 105, AMS, Providence, RI, 1990, 191–211 | DOI | MR

[11] D. Goswami, A. K. Pal, K. B. Sinha, “Stochastic dilation of a quantum dynamical semigroup on a separable unital $C^*$ algebra”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 3:1 (2000), 177–184 | DOI | MR

[12] D. Goswami, K. B. Sinha, “Hilbert modules and stochastic dilation of a quantum dynamical semigroup on a von Neumann algebra”, Commun. Math. Phys., 205:2 (1999), 377–403 | DOI | MR

[13] J. L. Sauvageot, “Tangent bimodule and locality for dissipative operators on {$C^*$}-algebras”, Quantum Probability and Applications IV, Lecture Notes in Mathematics, 1396, eds. L. Accardi, W. Waldenfels, Springer, Berlin, Heidelberg, 1989, 322–338 | DOI | MR

[14] F. Fathizadeh, “On the scalar curvature for the noncommutative four torus”, J. Math. Phys., 56:6 (2015), 062303, 14 pp. | DOI | MR

[15] F. Fathizadeh, M. Khalkhali, “Scalar curvature for the noncommutative two torus”, J. Noncommut. Geom., 7:4 (2013), 1145–1183 | DOI | MR

[16] O. Bratteli, G. A. Elliott, P. E. T. Jorgensen, “Decomposition of unbounded derivations into invariant and approximately inner parts”, J. Reine Angew. Math., 1984:346 (1984), 166–193 | DOI | MR

[17] E. Nelson, “Notes on non-commutative integration”, J. Funct. Anal., 15:2 (1974), 103–116 | DOI | MR

[18] M. P. Evans, “Existence of quantum diffusions”, Probab. Theory Related Fields, 81:4 (1989), 473–483 | DOI | MR

[19] M. P. Evans, R. L. Hudson, “Perturbations of quantum diffusions”, J. London Math. Soc., s2-41:2 (1990), 373–384 | DOI

[20] R. L. Hudson, P. Robinson, “Quantum diffusions and the noncommutative torus”, Lett. Math. Phys., 15:1 (1988), 47–53 | MR

[21] K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus, Monographs in Mathematics, 85, Birkhäuser, Basel, 1992 | DOI | MR

[22] S. Rosenberg, The Laplacian on a Riemannian manifold, London Mathematical Society Student Texts, 31, Cambridge Univ. Press, Cambridge, 1997 | DOI | MR

[23] G. B. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies, 122, Princeton Univ. Press, Princeton, NJ, 1989 | DOI | MR