@article{TMF_2024_220_2_a9,
author = {M. N. Hounkonnou and F. Melong},
title = {Geometry and probability on the~noncommutative $2$-torus in a~magnetic field},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {377--395},
year = {2024},
volume = {220},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a9/}
}
TY - JOUR AU - M. N. Hounkonnou AU - F. Melong TI - Geometry and probability on the noncommutative $2$-torus in a magnetic field JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 377 EP - 395 VL - 220 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a9/ LA - ru ID - TMF_2024_220_2_a9 ER -
M. N. Hounkonnou; F. Melong. Geometry and probability on the noncommutative $2$-torus in a magnetic field. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 2, pp. 377-395. http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a9/
[1] L. G. Brown, R. G. Douglas, P. A. Fillmore, “Extensions of $C^*$-algebras and $K$-homology”, Ann. Math. (2), 105:2 (1977), 265–324 | DOI | MR
[2] A. Connes, Noncommutative Geometry, Academic Press, San Diego, CA, 1994 | MR | Zbl
[3] J. Ben Geloun, M. N. Hounkonnou, F. Massamba, “Moyal algebra: relevant properties, projective limits and applications in noncommutative field theory”, SUT J. Math, 44:1, 55–88 | MR
[4] M. N. Hounkonnou, F. Massamba, J. Ben Geloun, “Two-dimensional noncommutative field theory on the light cone”, J. Geom. Symmetry Phys., 6 (2006), 38–46 | MR
[5] P. Kruszyński, S. L. Woronowicz, “A noncommutative Gelfand–Naimark theorem”, J. Operator Theory, 8:2 (1982), 361–389 | MR
[6] M. Khalkhali, Basic Noncommutative Geometry, EMS Series of Lectures in Mathematics, EMS, Zürich, 2009 | MR
[7] K. B. Sinha, “Noncommutative geometry, probability and quantum mechanics”, Proceedings of the 8th International Workshop on Contemporary Problems in Mathematical Physics (Cotonou, Bénin, November 2–8, 2013), World Sci., Singapore, 135–179
[8] M. Sakamoto, S. Tanimura, “An extension of Fourier analysis for the $n$-torus in the magnetic field and its application to spectral analysis of the magnetic Laplacian”, J. Math. Phys., 44:11 (2003), 5042–5069 | DOI | MR
[9] P. S. Chakraborty, D. Goswami, K. B. Sinha, “Probability and geometry on some noncommutative manifolds”, J. Operator Theory, 49:1 (2003), 185–201 | MR
[10] M. A. Rieffel, “Noncommutative tori – a case study of noncommutative differentiable manifolds”, Geometric and Topological Invariants of Elliptic Operators, Contemporary Mathematics, 105, AMS, Providence, RI, 1990, 191–211 | DOI | MR
[11] D. Goswami, A. K. Pal, K. B. Sinha, “Stochastic dilation of a quantum dynamical semigroup on a separable unital $C^*$ algebra”, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 3:1 (2000), 177–184 | DOI | MR
[12] D. Goswami, K. B. Sinha, “Hilbert modules and stochastic dilation of a quantum dynamical semigroup on a von Neumann algebra”, Commun. Math. Phys., 205:2 (1999), 377–403 | DOI | MR
[13] J. L. Sauvageot, “Tangent bimodule and locality for dissipative operators on {$C^*$}-algebras”, Quantum Probability and Applications IV, Lecture Notes in Mathematics, 1396, eds. L. Accardi, W. Waldenfels, Springer, Berlin, Heidelberg, 1989, 322–338 | DOI | MR
[14] F. Fathizadeh, “On the scalar curvature for the noncommutative four torus”, J. Math. Phys., 56:6 (2015), 062303, 14 pp. | DOI | MR
[15] F. Fathizadeh, M. Khalkhali, “Scalar curvature for the noncommutative two torus”, J. Noncommut. Geom., 7:4 (2013), 1145–1183 | DOI | MR
[16] O. Bratteli, G. A. Elliott, P. E. T. Jorgensen, “Decomposition of unbounded derivations into invariant and approximately inner parts”, J. Reine Angew. Math., 1984:346 (1984), 166–193 | DOI | MR
[17] E. Nelson, “Notes on non-commutative integration”, J. Funct. Anal., 15:2 (1974), 103–116 | DOI | MR
[18] M. P. Evans, “Existence of quantum diffusions”, Probab. Theory Related Fields, 81:4 (1989), 473–483 | DOI | MR
[19] M. P. Evans, R. L. Hudson, “Perturbations of quantum diffusions”, J. London Math. Soc., s2-41:2 (1990), 373–384 | DOI
[20] R. L. Hudson, P. Robinson, “Quantum diffusions and the noncommutative torus”, Lett. Math. Phys., 15:1 (1988), 47–53 | MR
[21] K. R. Parthasarathy, An Introduction to Quantum Stochastic Calculus, Monographs in Mathematics, 85, Birkhäuser, Basel, 1992 | DOI | MR
[22] S. Rosenberg, The Laplacian on a Riemannian manifold, London Mathematical Society Student Texts, 31, Cambridge Univ. Press, Cambridge, 1997 | DOI | MR
[23] G. B. Folland, Harmonic Analysis in Phase Space, Annals of Mathematics Studies, 122, Princeton Univ. Press, Princeton, NJ, 1989 | DOI | MR