Generalized Chaos game in an extended hyperbolic plane
Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 2, pp. 350-376 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We propose and theoretically substantiate an algorithm for conducting a generalized Chaos game with an arbitrary jump on finite convex polygons of the extended hyperbolic plane $H^2$ whose components in the Cayley–Klein projective model are the Lobachevsky plane and its ideal domain. In particular, the defining identities for a point dividing an elliptic, hyperbolic, or parabolic segment in a given ratio are proved, and formulas for calculating the coordinates of such a point at a canonical frame of the first type are obtained. The results of a generalized Chaos game conducted using the advanced software package pyv are presented.
Keywords: extended hyperbolic plane, Lobachevsky plane, hyperbolic plane of positive curvature, Chaos game.
Mots-clés : fractal
@article{TMF_2024_220_2_a8,
     author = {L. N. Romakina and I. V. Ushakov},
     title = {Generalized {Chaos} game in an~extended hyperbolic plane},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {350--376},
     year = {2024},
     volume = {220},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a8/}
}
TY  - JOUR
AU  - L. N. Romakina
AU  - I. V. Ushakov
TI  - Generalized Chaos game in an extended hyperbolic plane
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 350
EP  - 376
VL  - 220
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a8/
LA  - ru
ID  - TMF_2024_220_2_a8
ER  - 
%0 Journal Article
%A L. N. Romakina
%A I. V. Ushakov
%T Generalized Chaos game in an extended hyperbolic plane
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 350-376
%V 220
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a8/
%G ru
%F TMF_2024_220_2_a8
L. N. Romakina; I. V. Ushakov. Generalized Chaos game in an extended hyperbolic plane. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 2, pp. 350-376. http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a8/

[1] B. A. Rozenfeld, M. P. Zamakhovskii, Geometriya grupp Li. Simmetricheskie, parabolicheskie i periodicheskie prostranstva, MTsNMO, M., 2003

[2] B. A. Rozenfeld, Neevklidovy prostranstva, Nauka, M., 1969

[3] L. N. Romakina, Geometriya giperbolicheskoi ploskosti polozhitelnoi krivizny. Ch. 1: Trigonometriya, Izd-vo Sarat. un-ta, Saratov, 2013

[4] L. N. Romakina, Geometriya giperbolicheskoi ploskosti polozhitelnoi krivizny. Ch. 2: Preobrazovaniya i prostye razbieniya, Izd-vo Sarat. un-ta, Saratov, 2013

[5] N. V. Efimov, Vysshaya geometriya, Nauka, M., 1978 | MR | MR | Zbl

[6] F. Klein, Neevklidova geometriya, ONTI NKTP SSSR, M.–L., 1936 | MR

[7] M. F. Barnsley, Fractals Everywhere, Academic Press, Boston, MA, 1988 | MR

[8] L. N. Romakina, I. V. Ushakov, “Igra Khaos na rasshirennoi giperbolicheskoi ploskosti”, TMF, 215:3 (2023), 388–400 | DOI | DOI | MR

[9] L. N. Romakina, I. V. Ushakov, “The Chaos game in the hyperbolic plane of positive curvature”, Nonlinear Dynamics $\$ Integrability (NDI-2022), Abstracts (Satellite International Conference on Nonlinear Dynamics Integrability and Scientific School “Nonlinear Days”, Yaroslavl, June 27 – July 1, 2022), Yaroslavl State Univ., Yaroslavl, 2022, 86–88

[10] pyv, https://github.com/MrReDoX/pyv

[11] L. N. Romakina, “Koordinaty seredin neparabolicheskikh otrezkov giperbolicheskoi ploskosti polozhitelnoi krivzny v kanonicheskom repere pervogo tipa”, Matematika. Mekhanika, 20 (2018), 70–72

[12] L. N. Romakina, “Coordinates of the midpoint of a segment in an extended hyperbolic space”, Int. Electron. J. Geom., 16:1 (2023), 272–282 | DOI | MR

[13] E. A. Smirnova, “Stokhasticheskie fraktaly i ‘igra Khaos’ dlya pravilnogo pyatiugolnika”, Student goda 2020. Ch. 1, Sbornik statei Mezhdunarodnogo uchebno-issledovatelskogo konkursa (Petrozavodsk, 11 maya 2020 g.), Mezhdunarodnyi tsentr nauchnogo partnerstva “Novaya nauka” (IP Ivanovskaya I.I.), Petrozavodsk, 2020, 422–430 | DOI

[14] L. N. Romakina, “Regular and equiangular polygons of a hyperbolic plane of positive curvature”, Int. Electron. J. Geom., 10:2 (2017), 20–31 | DOI | MR

[15] L. N. Romakina, “To a question on the existence of regular mosaics on a hyperbolic plane of positive curvature”, Miskolc Math. Notes, 19:2 (2018), 1117–1132 | DOI | MR

[16] L. S. Atanasyan, V. T. Bazylev, Geometriya, v 2-kh ch. Ch. 2, Prosveschenie, M., 1987

[17] L. N. Romakina, “Konechnye zamknutye $3(4)$-kontury rasshirennoi giperbolicheskoi ploskosti”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 10:3 (2010), 14–26 | DOI

[18] L. N. Romakina, “Prostye razbieniya giperbolicheskoi ploskosti polozhitelnoi krivizny”, Matem. sb., 203:9 (2012), 83–116 | DOI | DOI | MR | Zbl

[19] L. N. Romakina, “Veernye triangulyatsii giperbolicheskoi ploskosti polozhitelnoi krivizny”, Matem. tr., 16:2 (2013), 142–168 | DOI | MR

[20] L. N. Romakina, “Kovry na prostykh 4-konturakh giperbolicheskoi ploskosti polozhitelnoi krivizny”, Diskret. matem., 26:1 (2014), 118–132 | DOI | DOI | MR

[21] L. N. Romakina, “Inequalities of trihedrals on a hyperbolic plane of positive curvature”, Beitr. Algebra Geom., 58:4 (2017), 723–734 | DOI | MR

[22] L. N. Romakina, Geometrii koevklidovoi i kopsevdoevklidovoi ploskostei, Nauchnaya kniga, Saratov, 2008