Kramers–Wannier duality and Tutte polynomials
Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 2, pp. 286-297 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study applications of the connection between the partition functions of the Potts models and Tutte polynomials: it is demonstrated how the Kramers–Wannier duality can be derived from the Tutte duality. Using the “contraction–elimination” relation and the Biggs formalism, we derive the high-temperature expansion and discuss possible methods for generalizing the Kramers–Wannier duality to models on nonplanar graphs.
Keywords: Ising model, Potts model, Tutte polynomials, Biggs model, Kramers–Wannier duality.
@article{TMF_2024_220_2_a4,
     author = {A. A. Kazakov},
     title = {Kramers{\textendash}Wannier duality and {Tutte} polynomials},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {286--297},
     year = {2024},
     volume = {220},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a4/}
}
TY  - JOUR
AU  - A. A. Kazakov
TI  - Kramers–Wannier duality and Tutte polynomials
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 286
EP  - 297
VL  - 220
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a4/
LA  - ru
ID  - TMF_2024_220_2_a4
ER  - 
%0 Journal Article
%A A. A. Kazakov
%T Kramers–Wannier duality and Tutte polynomials
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 286-297
%V 220
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a4/
%G ru
%F TMF_2024_220_2_a4
A. A. Kazakov. Kramers–Wannier duality and Tutte polynomials. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 2, pp. 286-297. http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a4/

[1] A. A. Belavin, A. G. Kulakov, R. A. Usmanov, Lektsii po teoreticheskoi fizike, Uchebnoe posobie, Izd-vo MTsNMO, M., 2001

[2] L. D. Landau, E. M. Lifshits, Kurs teoreticheskoi fiziki, v. 5, Statisticheskaya fizika, Nauka, M., 1976 | MR | Zbl

[3] N. Biggs, Interaction Models, London Mathematical Society Lecture Note Series, 30, Cambridge Univ. Press, Cambridge, New York, Melbourne, 1977 | DOI | MR

[4] V. V. Prasolov, Elementy kombinatornoi i differentsialnoi topologii, Izd-vo MTsNMO, M., 2004 | DOI | MR | Zbl

[5] J. A. Ellis-Monaghan, I. Moffatt (eds.), Handbook of the Tutte Polynomial and Related Topics, CRC Press, New York, 2022 | DOI

[6] L. Beaudin, J. Ellis-Monaghan, G. Pangborn, R. Shrock, “A little statistical mechanics for the graph theorist”, Discrete Math., 310:13–14 (2010), 2037–2053 | DOI | MR

[7] B. Bychkov, A. Kazakov, D. Talalaev, “Functional relations on anisotropic Potts models: from Biggs formula to the tetrahedron equation”, SIGMA, 17 (2021), 035, 30 pp. | DOI | MR

[8] A. D. Sokal, “The multivariate Tutte polynomial (alias Potts model) for graphs and matroids”, Surveys in Combinatorics, London Mathematical Society Lecture Note Series, 327, ed. B. S. Webb, Cambridge Univ. Press, Cambridge, 2005, 173–226 | DOI | MR

[9] T. Krajewski, I. Moffatt, A. Tanasa, “Hopf algebras and Tutte polynomials”, Adv. Appl. Math., 95 (2018), 271–330 | DOI | MR

[10] S. Chmutov, “Generalized duality for graphs on surfaces and the signed Bollobás–Riordan polynomial”, J. Combin. Theory Ser. B, 99:3 (2009), 617–638 | DOI | MR

[11] J. A. Ellis-Monaghan, I. Moffatt, Graphs on Surfaces: Dualities, Polynomials, and Knots, Springer, New York, 2013 | DOI | MR

[12] J. A. Ellis-Monaghan, C. Merino, “Graph polynomials and their applications I: The Tutte polynomial”, Structural Analysis of Complex Networks, eds. M. Dehmer, Birkhäuser, Boston, 2011, 219–255 | DOI | MR

[13] F. Y. Wu, “The Potts model”, Rev. Mod. Phys., 54:1 (1982), 235–268 | DOI | MR

[14] J. A. Ellis-Monaghan, C. Merino, “Graph polynomials and their applications II: Interrelations and interpretations”, Structural Analysis of Complex Networks, eds. M. Dehmer, Birkhäuser, Boston, 2011, 257–292 | DOI | MR

[15] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR | MR

[16] J. L. Cardy, “Critical percolation in finite geometries”, J. Phys. A: Math. Gen., 25:4 (1992), L201–L206, arXiv: hep-th/9111026 | DOI | MR

[17] G. Grimmett, “Three theorems in discrete random geometry”, Probab. Surv., 8 (2011), 403–441, arXiv: 1110.2395 | DOI | MR

[18] N. V. Vdovichenko, “Vychislenie statisticheskoi summy ploskoi dipolnoi reshetki”, ZhETF, 47:8 (1964), 715–719

[19] N. P. Dolbilin, Yu. M. Zinovev, A. S. Mischenko, M. A. Shtanko, M. I. Shtogrin, “Gomologicheskie svoistva dimernykh pokrytii reshetok na poverkhnostyakh”, Funkts. analiz i ego pril., 30:3 (1996), 19–33 | DOI | DOI | MR | Zbl