Mots-clés : bifurcation.
@article{TMF_2024_220_2_a2,
author = {L. I. Ivanovskiy},
title = {Dynamical properties of a~diffusion-coupled system of differential equations with an~additional internal coupling},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {261--274},
year = {2024},
volume = {220},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a2/}
}
TY - JOUR AU - L. I. Ivanovskiy TI - Dynamical properties of a diffusion-coupled system of differential equations with an additional internal coupling JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 261 EP - 274 VL - 220 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a2/ LA - ru ID - TMF_2024_220_2_a2 ER -
%0 Journal Article %A L. I. Ivanovskiy %T Dynamical properties of a diffusion-coupled system of differential equations with an additional internal coupling %J Teoretičeskaâ i matematičeskaâ fizika %D 2024 %P 261-274 %V 220 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a2/ %G ru %F TMF_2024_220_2_a2
L. I. Ivanovskiy. Dynamical properties of a diffusion-coupled system of differential equations with an additional internal coupling. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 2, pp. 261-274. http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a2/
[1] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Diffuzionnyi khaos i ego invariantnye chislovye kharakteristiki”, TMF, 203:1 (2020), 10–25 | DOI | DOI
[2] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Relaksatsionnye kolebaniya i diffuzionnyi khaos v reaktsii Belousova”, Zhurn. vychislit. matem. i matem. fiziki, 51:8 (2011), 1400–1418 | DOI | MR
[3] N. F. Britton, Reaction-diffusion Equations and Their Applications to Biology, Academic Press, New York, 1986 | MR
[4] S. A. Gourley, J. W.-H. So, J. H. Wu, “Nonlocality of reaction-diffusion equations induced by delay: biological modeling and nonlinear dynamics”, J. Math. Sci., 4:4 (2004), 5119–5153 | DOI
[5] A. S. Rudyi, “Theoretical fundamentals of the method for thermal diffusivity measurements from auto-oscillation parameters in a system with a thermal feedback”, Internat. J. Thermophys., 14:1 (1993), 159–172 | DOI
[6] A. S. Rudyi, A. Yu. Kolesov, “Auto-oscillation in one-dimensional two-phase system with thermal feedback”, Nonlinear Anal., 31:5–6 (1998), 503–520 | DOI | MR
[7] L. I. Ivanovskii, “Dinamika odnoi sistemy diffuzionno svyazannykh differentsialnykh uravnenii s dopolnitelnoi vnutrennei svyazyu”, Izvestiya vysshikh uchebnykh zavedenii. Povolzhskii region. Fiziko-matematicheskie nauki, 55:3 (2020), 15–30 | DOI
[8] S. D. Glyzin, A. Yu. Kolesov, Lokalnye metody analiza dinamicheskikh sistem, YarGU im. P. G. Demidova, Yaroslavl, 2006
[9] Dzh. Gukenkheimer, F. Kholms, Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii vektornykh polei, In-t kompyuternykh issledovanii, M.–Izhevsk, 2002 | DOI
[10] V. I. Arnold, Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978
[11] A. B. Katok, B. Khasselblat, Vvedenie v teoriyu dinamicheskikh sistem s obzorom poslednikh dostizhenii, MTsNMO, M., 2005 | Zbl
[12] B. Khessard, N. Kazarinov, I. Ven, Teoriya i prilozheniya bifurkatsii rozhdeniya tsikla, Mir, M., 1985 | MR | Zbl
[13] S. A. Kaschenko, “O bifurkatsiyakh pri malykh vozmuscheniyakh v logisticheskom uravnenii s zapazdyvaniem”, Model. i analiz inform. sistem, 24:2 (2017), 168–185 | DOI
[14] Yu. A. Mitropolskii, O. B. Lykova, Integralnye mnogoobraziya v nelineinoi dinamike, Nauka, M., 1973 | MR