Periodic solutions of a differential equation with a discontinuous delayed neutral-type feedback
Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 2, pp. 396-404 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a differential equation with a discontinuous delayed neutral-type feedback. In the phase space, we describe classes of initial functions that depend on a number of parameters. We show that in a certain time, solutions return to an analogous class, possibly with other parameters. The analysis of the change in the parameters allows describing periodic solutions and their stability. We show that infinitely many of stable periodic solutions exist.
Mots-clés : neutral-type equation
Keywords: discontinuous delayed feedback, periodic solution.
@article{TMF_2024_220_2_a10,
     author = {Yu. A. Yakubiv},
     title = {Periodic solutions of a~differential equation with a~discontinuous delayed neutral-type feedback},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {396--404},
     year = {2024},
     volume = {220},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a10/}
}
TY  - JOUR
AU  - Yu. A. Yakubiv
TI  - Periodic solutions of a differential equation with a discontinuous delayed neutral-type feedback
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 396
EP  - 404
VL  - 220
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a10/
LA  - ru
ID  - TMF_2024_220_2_a10
ER  - 
%0 Journal Article
%A Yu. A. Yakubiv
%T Periodic solutions of a differential equation with a discontinuous delayed neutral-type feedback
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 396-404
%V 220
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a10/
%G ru
%F TMF_2024_220_2_a10
Yu. A. Yakubiv. Periodic solutions of a differential equation with a discontinuous delayed neutral-type feedback. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 2, pp. 396-404. http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a10/

[1] T. Erneux, Applied Delay Differential Equations, Surveys and Tutorials in the Applied Mathematical Sciences, 3, Springer, New York, 2009 | DOI | MR | Zbl

[2] H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Texts in Applied Mathematics, 57, Springer, New York, 2011 | DOI | MR | Zbl

[3] F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Texts in Applied Mathematics, 40, Springer, New York, 2012 | DOI | MR | Zbl

[4] V. Kolmanovskii, A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Mathematics and its Applications, 463, Kluwer, Dordrecht, 1999 | DOI | MR | Zbl

[5] G. I. Marchuk, Matematicheskie metody v immunologii. Vychislitelnye metody i algoritmy, Nauka, M., 1991 | MR | Zbl

[6] Dzh. Kheil, Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | DOI | MR | MR | Zbl

[7] A. A. Kashchenko, “Relaxation modes of a system of diffusion coupled oscillators with delay”, Commun. Nonlinear Sci. Numer. Simulat., 93 (2021), 105488, 10 pp. | DOI | MR

[8] S. A. Kaschenko, “Dinamika logisticheskogo uravneniya, soderzhaschego zapazdyvanie”, Matem. zametki, 98:1 (2015), 85–100 | DOI | DOI | MR

[9] S. Yanchuk, S. Ruschel, J. Sieber, M. Wolfrum, “Temporal dissipative solitons in time-delay feedback systems”, Phys. Rev. Lett., 123:5 (2019), 053901, 6 pp. | DOI | MR

[10] I. Kashchenko, “Endless process of bifurcations in delay differential equations”, Internat. J. Bifurcation Chaos Appl. Sci. Eng., 32:13 (2022), 2250193, 15 pp. | DOI | MR

[11] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Periodicheskie resheniya tipa beguschikh voln v koltsevykh tsepochkakh odnonapravlenno svyazannykh uravnenii”, TMF, 175:1 (2013), 62–83 | DOI | DOI | MR | Zbl

[12] A. Kashchenko, “Asymptotics of solutions to a differential equation with delay and nonlinearity having simple behaviour at infinity”, Mathematics, 10:18 (2022), 3360, 16 pp. | DOI

[13] A. Kashchenko, I. Kashchenko, S. Kondratiev, “Travelling waves in the ring of coupled oscillators with delayed feedback”, Mathematics, 11:13 (2023), 2827, 17 pp. | DOI

[14] E. V. Grigorieva, S. A. Kashchenko, “Complex temporal structures in models of a laser with optoelectronic delayed feedback”, Opt. Commun., 102:1–2 (1993), 183–192 | DOI