Stationary thermal front in the problem of reconstructing the semiconductor thermal conductivity coefficient using simulation
Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 2, pp. 237-260 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the problem of the existence of stationary, asymptotically Lyapunov-stable solutions with internal transition layers in nonlinear heat conductance problems with a thermal flow containing a negative exponent. We formulate sufficient conditions for the existence of classical solutions with internal layers in such problems. We construct an asymptotic approximation of an arbitrary-order for the solution with a transition layer. We substantiate the algorithm for constructing the formal asymptotics and study the asymptotic Lyapunov stability of the stationary solution with an internal layer as a solution of the corresponding parabolic problem with the description of the local attraction domain of the stable stationary solution. As an application, we present a new effective method for reconstructing the nonlinear thermal conductivity coefficient with a negative exponent using the position of the stationary thermal front in combination with observation data.
Keywords: stationary thermal structures, nonlinear heat conductance problems, asymptotic methods, solutions with internal transition layers, inverse coefficient problems, methods for reconstructing thermophysical characteristics of nonlinear media, determination of the thermal conductivity coefficient.
@article{TMF_2024_220_2_a1,
     author = {M. A. Davydova and G. D. Rublev},
     title = {Stationary thermal front in the~problem of reconstructing the~semiconductor thermal conductivity coefficient using simulation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {237--260},
     year = {2024},
     volume = {220},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a1/}
}
TY  - JOUR
AU  - M. A. Davydova
AU  - G. D. Rublev
TI  - Stationary thermal front in the problem of reconstructing the semiconductor thermal conductivity coefficient using simulation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 237
EP  - 260
VL  - 220
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a1/
LA  - ru
ID  - TMF_2024_220_2_a1
ER  - 
%0 Journal Article
%A M. A. Davydova
%A G. D. Rublev
%T Stationary thermal front in the problem of reconstructing the semiconductor thermal conductivity coefficient using simulation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 237-260
%V 220
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a1/
%G ru
%F TMF_2024_220_2_a1
M. A. Davydova; G. D. Rublev. Stationary thermal front in the problem of reconstructing the semiconductor thermal conductivity coefficient using simulation. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 2, pp. 237-260. http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a1/

[1] GOST R 57967-2017. Kompozity. Opredelenie teploprovodnosti tverdykh tel metodom statsionarnogo odnomernogo teplovogo potoka s okhrannym nagrevatelem, Standartinform, M., 2019

[2] GOST 30256-94. Materialy i izdeliya stroitelnye: metod opredeleniya teploprovodnosti tsilindricheskim zondom, MNTKS, M., 1996

[3] A. N. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byull. Mosk. gos. un-ta. Sep. A. Matem. mekhan., 1:6 (1937), 1–25 | Zbl

[4] J. Crank, The Mathematics of Diffusion, Oxford Univ. Press, London, 1956 | MR

[5] M. A. Davydova, S. A. Zakharova, “O singulyarno vozmuschennoi statsionarnoi diffuzionnoi modeli s kubicheskoi nelineinostyu”, Differents. uravneniya, 56:7 (2020), 849–860 | DOI | DOI

[6] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | DOI | MR | MR | Zbl

[7] E. M. Kartashov, V. A. Kudinov, Analiticheskie metody teorii teploprovodnosti i ee prilozhenii, Lenand, M., 2018

[8] M. A. Davydova, S. A. Zakharova, “Multidimensional thermal structures in the singularly perturbed stationary models of heat and mass transfer with a nonlinear thermal diffusion coefficient”, J. Comput. Appl. Math., 400 (2022), 113731, 18 pp. | DOI | MR

[9] V. P. Maslov, V. G. Danilov, K. L. Volosov, Matematicheskoe modelirovanie protsessov teplomassoperenosa. Evolyutsiya dissipativnykh struktur, Nauka, M., 1987 | MR

[10] N. A. Tikhonov, S. A. Zakharova, M. A. Davydova, “Modelirovanie dinamiki obrazovaniya shleifa NO$_2$ ot tochechnogo istochnika”, Optika atmosfery i okeana, 33:9 (2020), 722–727 | DOI

[11] A. A. Samarskii, P. N. Vabischevich, Vychislitelnaya teploperedacha, Editorial URSS, M., 2003

[12] N. A. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1979

[13] V. A. Galaktionov, S. P. Kurdyumov, A. A. Samarskii, Protsessy v otkrytykh dissipativnykh sistemakh. Graficheskoe issledovanie evolyutsii teplovykh struktur, Matematika, kibernetika, 11, Znanie, M., 1988

[14] S. P. Kurdyumov, E. S. Kurkina, A. B. Potapov, A. A. Samarskii, “Arkhitektura mnogomernykh teplovykh struktur”, Dokl. AN SSSR, 274:5 (1984), 1071–1075

[15] J. J. P. Kuenen, A. J. H. Visschedijk, M. Jozwicka, H. A. C. Denier van der Gon, “TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution european emission inventory for air quality modeling”, Atmos. Chem. Phys., 14:20 (2014), 10963–10976 | DOI

[16] S. A. Zakharova, N. F. Elanskii, Ya. M. Verevkin, M. A. Davydova, “Opredelenie emissii v gorode po skorosti rosta integralnogo soderzhaniya primesi v pogranichnom sloe atmosfery”, Dokl. RAN. Nauki o Zemle, 504:1 (2022), 110–116 | DOI | MR

[17] A. E. Aloyan, Modelirovanie dinamiki i kinetiki gazovykh primesei i aerozolei v atmosfere, Nauka, M., 2014

[18] A. Jeric̆ević, L. Kraljević, B. Grisogono, H. Fagerli, Z̆. Vec̆enaj, “Parameterization of vertical diffusion and the atmospheric boundary layer height determination in the EMEP model”, Atmos. Chem. Phys., 10:2 (2010), 341–364 | DOI

[19] D. G. Aronson, H. F. Weinberger, “Multidimensional nonlinear diffusion airing in population genetics”, Adv. Math., 30:1 (1978), 33–76 | DOI | MR

[20] N. V. Belotelov, A. I. Lobanov, “Populyatsionnye modeli s nelineinoi diffuziei”, Matem. modelirovanie, 9:12 (1997), 43–56 | MR | Zbl

[21] M. A. Davydova, G. D. Rublev, “Asimptoticheski ustoichivye resheniya s pogranichnymi i vnutrennimi sloyami v pryamykh i obratnykh zadachakh dlya singulyarno vozmuschennogo uravneniya teploprovodnosti s nelineinoi teplovoi diffuziei”, Differents. uravneniya, 60:4 (2024), 439–462 | DOI

[22] A. B. Vasileva, M. A. Davydova, “O kontrastnoi strukture tipa stupenki dlya odnogo klassa nelineinykh singulyarno vozmuschennykh uravnenii vtorogo poryadka”, Zhurn. vychisl. matem. i matem. fiz., 38:6 (1998), 938–947 | MR | Zbl

[23] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR | MR

[24] N. N. Nefedov, “Metod differentsialnykh neravenstv dlya nekotorykh singulyarno vozmuschennykh zadach v chastnykh proizvodnykh”, Differents. uravneniya, 31:4 (1995), 718–722 | MR

[25] J. Wang, “Monotone method for diffusion equations with nonlinear diffusion coefficients”, Nonlinear Anal., 34:1 (1998), 113–142 | DOI | MR

[26] H. Brill, “On the solvability of semilinear elliptic equations with nonlinear boundary conditions”, Math. Ann., 222:1 (1976), 37–48 | DOI | MR

[27] V. T. Volkov, N. N. Nefedov, “Asimptoticheskoe reshenie koeffitsientnykh obratnykh zadach dlya uravnenii tipa Byurgersa”, Zhurn. vychisl. matem. i matem. fiz., 60:6 (2020), 975–984 | DOI | DOI

[28] V. T. Volkov, N. N. Nefedov, “Asimptoticheskoe reshenie zadachi granichnogo upravleniya dlya uravneniya tipa Byurgersa s modulnoi advektsiei i lineinym usileniem”, Zhurn. vychisl. matem. i matem. fiz., 62:11 (2022), 1851–1860 | DOI | DOI

[29] R. L. Argun, V. T. Volkov, D. V. Lukyanenko, “Numerical simulation of front dynamics in a nonlinear singularly perturbed reaction-diffusion problem”, J. Comput. Appl. Math., 412 (2022), 114294, 15 pp. | DOI | MR

[30] V. T. Volkov, D. V. Lukyanenko, N. N. Nefedov, “Analitiko-chislennyi podkhod dlya opisaniya periodicheskikh po vremeni dvizhuschikhsya frontov v singulyarno vozmuschennykh modelyakh reaktsiya-diffuziya-advektsiya”, Zhurn. vychisl. matem. i matem. fiz., 59:1 (2019), 50–62 | DOI | DOI

[31] D. V. Lukyanenko, V. B. Grigorev, V. T. Volkov, M. A. Shishlenin, “Solving of the coefficient inverse problem for a nonlinear singularly perturbed two-dimensional reaction-diffusion equation with the location of moving front data”, Comput. Math. Appl., 77:5 (2019), 1245–1254 | DOI | MR

[32] M. A. Davydova, N. F. Elanskii, S. A. Zakharova, “O novom podkhode k zadache vosstanovleniya vertikalnogo koeffitsienta turbulentnoi diffuzii v pogranichnom sloe atmosfery”, Dokl. RAN, 490:2 (2020), 51–56 | DOI | DOI

[33] S. A. Zakharova, M. A. Davydova, D. V. Lukyanenko, “Use of asymptotic analysis for solving the inverse problem of source parameters determination of nitrogen oxide emission in the atmosphere”, Inverse Probl. Sci. Eng., 29:3 (2021), 365–377 | DOI | MR

[34] M. A. Davydova, “Suschestvovanie i ustoichivost reshenii s pogranichnymi sloyami v mnogomernykh singulyarno vozmuschennykh zadachakh reaktsiya-diffuziya-advektsiya”, Matem. zametki, 98:6 (2015), 853–864 | DOI | DOI | MR

[35] N. N. Nefedov, E. I. Nikulin, L. Recke, “On the existence and asymptotic stability of periodic contrast structures in quasilinear reaction-advection-diffusion equations”, Russ. J. Math. Phys., 26:1 (2019), 55–69 | DOI | MR

[36] M. M. Lavrentev, O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, Izd-vo SO AN SSSR, Novosibirsk, 1962 | MR

[37] Karbid kremniya (Karborund, SiC), [Elektronnyi resurs] URL: https://si-c.ru/informat/infosic.html

[38] E. Ya. Litovskii, N. A. Puchkelevich, Teplofizicheskie svoistva ogneuporov, Metallurgiya, M., 1982

[39] N. N. Kalitkin, Chislennye metody, Nauka, M., 1978 | MR

[40] SciPy documentation version 1.11.4, scipy.integrate.solve_ivp [Elektronnyi resurs] URL: https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html

[41] SciPy documentation version 1.11.4, Optimization (scipy.optimize) [Elektronnyi resurs] URL: https://docs.scipy.org/doc/scipy/tutorial/optimize.html#nelder-mead-simplex-algorithm-method-nelder-mead