@article{TMF_2024_220_2_a1,
author = {M. A. Davydova and G. D. Rublev},
title = {Stationary thermal front in the~problem of reconstructing the~semiconductor thermal conductivity coefficient using simulation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {237--260},
year = {2024},
volume = {220},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a1/}
}
TY - JOUR AU - M. A. Davydova AU - G. D. Rublev TI - Stationary thermal front in the problem of reconstructing the semiconductor thermal conductivity coefficient using simulation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 237 EP - 260 VL - 220 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a1/ LA - ru ID - TMF_2024_220_2_a1 ER -
%0 Journal Article %A M. A. Davydova %A G. D. Rublev %T Stationary thermal front in the problem of reconstructing the semiconductor thermal conductivity coefficient using simulation %J Teoretičeskaâ i matematičeskaâ fizika %D 2024 %P 237-260 %V 220 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a1/ %G ru %F TMF_2024_220_2_a1
M. A. Davydova; G. D. Rublev. Stationary thermal front in the problem of reconstructing the semiconductor thermal conductivity coefficient using simulation. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 2, pp. 237-260. http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a1/
[1] GOST R 57967-2017. Kompozity. Opredelenie teploprovodnosti tverdykh tel metodom statsionarnogo odnomernogo teplovogo potoka s okhrannym nagrevatelem, Standartinform, M., 2019
[2] GOST 30256-94. Materialy i izdeliya stroitelnye: metod opredeleniya teploprovodnosti tsilindricheskim zondom, MNTKS, M., 1996
[3] A. N. Kolmogorov, I. G. Petrovskii, N. S. Piskunov, “Issledovanie uravneniya diffuzii, soedinennoi s vozrastaniem veschestva, i ego primenenie k odnoi biologicheskoi probleme”, Byull. Mosk. gos. un-ta. Sep. A. Matem. mekhan., 1:6 (1937), 1–25 | Zbl
[4] J. Crank, The Mathematics of Diffusion, Oxford Univ. Press, London, 1956 | MR
[5] M. A. Davydova, S. A. Zakharova, “O singulyarno vozmuschennoi statsionarnoi diffuzionnoi modeli s kubicheskoi nelineinostyu”, Differents. uravneniya, 56:7 (2020), 849–860 | DOI | DOI
[6] A. A. Samarskii, V. A. Galaktionov, S. P. Kurdyumov, A. P. Mikhailov, Rezhimy s obostreniem v zadachakh dlya kvazilineinykh parabolicheskikh uravnenii, Nauka, M., 1987 | DOI | MR | MR | Zbl
[7] E. M. Kartashov, V. A. Kudinov, Analiticheskie metody teorii teploprovodnosti i ee prilozhenii, Lenand, M., 2018
[8] M. A. Davydova, S. A. Zakharova, “Multidimensional thermal structures in the singularly perturbed stationary models of heat and mass transfer with a nonlinear thermal diffusion coefficient”, J. Comput. Appl. Math., 400 (2022), 113731, 18 pp. | DOI | MR
[9] V. P. Maslov, V. G. Danilov, K. L. Volosov, Matematicheskoe modelirovanie protsessov teplomassoperenosa. Evolyutsiya dissipativnykh struktur, Nauka, M., 1987 | MR
[10] N. A. Tikhonov, S. A. Zakharova, M. A. Davydova, “Modelirovanie dinamiki obrazovaniya shleifa NO$_2$ ot tochechnogo istochnika”, Optika atmosfery i okeana, 33:9 (2020), 722–727 | DOI
[11] A. A. Samarskii, P. N. Vabischevich, Vychislitelnaya teploperedacha, Editorial URSS, M., 2003
[12] N. A. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1979
[13] V. A. Galaktionov, S. P. Kurdyumov, A. A. Samarskii, Protsessy v otkrytykh dissipativnykh sistemakh. Graficheskoe issledovanie evolyutsii teplovykh struktur, Matematika, kibernetika, 11, Znanie, M., 1988
[14] S. P. Kurdyumov, E. S. Kurkina, A. B. Potapov, A. A. Samarskii, “Arkhitektura mnogomernykh teplovykh struktur”, Dokl. AN SSSR, 274:5 (1984), 1071–1075
[15] J. J. P. Kuenen, A. J. H. Visschedijk, M. Jozwicka, H. A. C. Denier van der Gon, “TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution european emission inventory for air quality modeling”, Atmos. Chem. Phys., 14:20 (2014), 10963–10976 | DOI
[16] S. A. Zakharova, N. F. Elanskii, Ya. M. Verevkin, M. A. Davydova, “Opredelenie emissii v gorode po skorosti rosta integralnogo soderzhaniya primesi v pogranichnom sloe atmosfery”, Dokl. RAN. Nauki o Zemle, 504:1 (2022), 110–116 | DOI | MR
[17] A. E. Aloyan, Modelirovanie dinamiki i kinetiki gazovykh primesei i aerozolei v atmosfere, Nauka, M., 2014
[18] A. Jeric̆ević, L. Kraljević, B. Grisogono, H. Fagerli, Z̆. Vec̆enaj, “Parameterization of vertical diffusion and the atmospheric boundary layer height determination in the EMEP model”, Atmos. Chem. Phys., 10:2 (2010), 341–364 | DOI
[19] D. G. Aronson, H. F. Weinberger, “Multidimensional nonlinear diffusion airing in population genetics”, Adv. Math., 30:1 (1978), 33–76 | DOI | MR
[20] N. V. Belotelov, A. I. Lobanov, “Populyatsionnye modeli s nelineinoi diffuziei”, Matem. modelirovanie, 9:12 (1997), 43–56 | MR | Zbl
[21] M. A. Davydova, G. D. Rublev, “Asimptoticheski ustoichivye resheniya s pogranichnymi i vnutrennimi sloyami v pryamykh i obratnykh zadachakh dlya singulyarno vozmuschennogo uravneniya teploprovodnosti s nelineinoi teplovoi diffuziei”, Differents. uravneniya, 60:4 (2024), 439–462 | DOI
[22] A. B. Vasileva, M. A. Davydova, “O kontrastnoi strukture tipa stupenki dlya odnogo klassa nelineinykh singulyarno vozmuschennykh uravnenii vtorogo poryadka”, Zhurn. vychisl. matem. i matem. fiz., 38:6 (1998), 938–947 | MR | Zbl
[23] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR | MR
[24] N. N. Nefedov, “Metod differentsialnykh neravenstv dlya nekotorykh singulyarno vozmuschennykh zadach v chastnykh proizvodnykh”, Differents. uravneniya, 31:4 (1995), 718–722 | MR
[25] J. Wang, “Monotone method for diffusion equations with nonlinear diffusion coefficients”, Nonlinear Anal., 34:1 (1998), 113–142 | DOI | MR
[26] H. Brill, “On the solvability of semilinear elliptic equations with nonlinear boundary conditions”, Math. Ann., 222:1 (1976), 37–48 | DOI | MR
[27] V. T. Volkov, N. N. Nefedov, “Asimptoticheskoe reshenie koeffitsientnykh obratnykh zadach dlya uravnenii tipa Byurgersa”, Zhurn. vychisl. matem. i matem. fiz., 60:6 (2020), 975–984 | DOI | DOI
[28] V. T. Volkov, N. N. Nefedov, “Asimptoticheskoe reshenie zadachi granichnogo upravleniya dlya uravneniya tipa Byurgersa s modulnoi advektsiei i lineinym usileniem”, Zhurn. vychisl. matem. i matem. fiz., 62:11 (2022), 1851–1860 | DOI | DOI
[29] R. L. Argun, V. T. Volkov, D. V. Lukyanenko, “Numerical simulation of front dynamics in a nonlinear singularly perturbed reaction-diffusion problem”, J. Comput. Appl. Math., 412 (2022), 114294, 15 pp. | DOI | MR
[30] V. T. Volkov, D. V. Lukyanenko, N. N. Nefedov, “Analitiko-chislennyi podkhod dlya opisaniya periodicheskikh po vremeni dvizhuschikhsya frontov v singulyarno vozmuschennykh modelyakh reaktsiya-diffuziya-advektsiya”, Zhurn. vychisl. matem. i matem. fiz., 59:1 (2019), 50–62 | DOI | DOI
[31] D. V. Lukyanenko, V. B. Grigorev, V. T. Volkov, M. A. Shishlenin, “Solving of the coefficient inverse problem for a nonlinear singularly perturbed two-dimensional reaction-diffusion equation with the location of moving front data”, Comput. Math. Appl., 77:5 (2019), 1245–1254 | DOI | MR
[32] M. A. Davydova, N. F. Elanskii, S. A. Zakharova, “O novom podkhode k zadache vosstanovleniya vertikalnogo koeffitsienta turbulentnoi diffuzii v pogranichnom sloe atmosfery”, Dokl. RAN, 490:2 (2020), 51–56 | DOI | DOI
[33] S. A. Zakharova, M. A. Davydova, D. V. Lukyanenko, “Use of asymptotic analysis for solving the inverse problem of source parameters determination of nitrogen oxide emission in the atmosphere”, Inverse Probl. Sci. Eng., 29:3 (2021), 365–377 | DOI | MR
[34] M. A. Davydova, “Suschestvovanie i ustoichivost reshenii s pogranichnymi sloyami v mnogomernykh singulyarno vozmuschennykh zadachakh reaktsiya-diffuziya-advektsiya”, Matem. zametki, 98:6 (2015), 853–864 | DOI | DOI | MR
[35] N. N. Nefedov, E. I. Nikulin, L. Recke, “On the existence and asymptotic stability of periodic contrast structures in quasilinear reaction-advection-diffusion equations”, Russ. J. Math. Phys., 26:1 (2019), 55–69 | DOI | MR
[36] M. M. Lavrentev, O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, Izd-vo SO AN SSSR, Novosibirsk, 1962 | MR
[37] Karbid kremniya (Karborund, SiC), [Elektronnyi resurs] URL: https://si-c.ru/informat/infosic.html
[38] E. Ya. Litovskii, N. A. Puchkelevich, Teplofizicheskie svoistva ogneuporov, Metallurgiya, M., 1982
[39] N. N. Kalitkin, Chislennye metody, Nauka, M., 1978 | MR
[40] SciPy documentation version 1.11.4, scipy.integrate.solve_ivp [Elektronnyi resurs] URL: https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html
[41] SciPy documentation version 1.11.4, Optimization (scipy.optimize) [Elektronnyi resurs] URL: https://docs.scipy.org/doc/scipy/tutorial/optimize.html#nelder-mead-simplex-algorithm-method-nelder-mead