Analysis of the asymptotic convergence of periodic solution of the Mackey–Glass equation to the solution of the limit relay equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 2, pp. 213-236 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The relaxation self-oscillations of the Mackey–Glass equation are studied under the assumption that the exponent in the nonlinearity denominator is a large parameter. We consider the case where the limit relay equation, which arises as the large parameter tends to infinity, has a periodic solution with the smallest number of breaking points on the period. In this case, we prove the existence of a periodic solution of the Mackey–Glass equation that is asymptotically close to the periodic solution of the limit equation.
Keywords: Mackey–Glass equation, asymptotics, periodic solution, delay differential equation, large parameter.
@article{TMF_2024_220_2_a0,
     author = {V. V. Alekseev and M. M. Preobrazhenskaia},
     title = {Analysis of the~asymptotic convergence of periodic solution of {the~Mackey{\textendash}Glass} equation to the~solution of the~limit relay equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {213--236},
     year = {2024},
     volume = {220},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a0/}
}
TY  - JOUR
AU  - V. V. Alekseev
AU  - M. M. Preobrazhenskaia
TI  - Analysis of the asymptotic convergence of periodic solution of the Mackey–Glass equation to the solution of the limit relay equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 213
EP  - 236
VL  - 220
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a0/
LA  - ru
ID  - TMF_2024_220_2_a0
ER  - 
%0 Journal Article
%A V. V. Alekseev
%A M. M. Preobrazhenskaia
%T Analysis of the asymptotic convergence of periodic solution of the Mackey–Glass equation to the solution of the limit relay equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 213-236
%V 220
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a0/
%G ru
%F TMF_2024_220_2_a0
V. V. Alekseev; M. M. Preobrazhenskaia. Analysis of the asymptotic convergence of periodic solution of the Mackey–Glass equation to the solution of the limit relay equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 2, pp. 213-236. http://geodesic.mathdoc.fr/item/TMF_2024_220_2_a0/

[1] M. C. Mackey, L. Glass, “Oscillation and chaos in physiological control systems”, Science, 197:4300 (1977), 287–289 | DOI

[2] L. Glass, M. Meki, Ot chasov k khaosu: Ritmy zhizni, Mir, M., 1991 | DOI | MR | MR | Zbl

[3] L. Junges, J. A. Gallas, “Intricate routes to chaos in the Mackey–Glass delayed feedback system”, Phys. Lett. A, 376:30–31 (2012), 2109–2116 | DOI

[4] L. Berezansky, E. Braverman, “Mackey–Glass equation with variable coefficients”, Comput. Math. Appl., 51:1 (2006), 1–16 | DOI | MR

[5] H. Su, X. Ding, W. Li, “Numerical bifurcation control of Mackey–Glass system”, Appl. Math. Model., 35:7 (2011), 3460–3472 | MR

[6] E. Liz, E. Trofimchuk, S. Trofimchuk, “Mackey–Glass type delay differential equations near the boundary of absolute stability”, J. Math. Anal. Appl., 275:2 (2002), 747–760 | DOI | MR

[7] X.-M. Wu, J.-W. Li, H.-Q. Zhou, “A necessary and sufficient condition for the existence of positive periodic solutions of a model of hematopoiesis”, Comput. Math. Appl., 54:6 (2007), 840–849 | DOI | MR

[8] E. P. Kubyshkin, A. R. Moryakova, “Bifurkatsii periodicheskikh reshenii uravneniya Mekki–Glassa”, Model. i analiz inform. sistem, 23:6 (2016), 784–803 | DOI | MR

[9] P. Amil, C. Cabeza, A. C. Martí, “Exact discrete-time implementation of the Mackey–Glass delayed model”, IEEE Transactions on Circuits and Systems-II: Express Briefs, 62:7 (2015), 681–685, arXiv: 1408.5083 | DOI

[10] F. A. Bartha, T. Krisztin, A. Vígh, “Stable periodic orbits for the Mackey–Glass equation”, J. Differ. Equ., 296 (2021), 15–49 | DOI | MR

[11] T. Krisztin, “Periodic solutions with long period for the Mackey–Glass equation”, Electron. J. Qual. Theory Differ. Equ., 2020 (2020), 83, 1–12, 12 pp. | DOI | MR

[12] A. Yu. Kolesov, E. F. Mischenko, N. Kh. Rozov, “Ob odnoi modifikatsii uravneniya Khatchinsona”, Zhurn. vychisl. matem. i matem. fiz., 50:12 (2010), 2099–2112 | DOI | MR

[13] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Ob odnom sposobe matematicheskogo modelirovaniya khimicheskikh sinapsov”, Differents. uravneniya, 49:10 (2013), 1227–1244 | DOI | MR | Zbl

[14] E. P. Volokitin, “O predelnykh tsiklakh v prosteishei modeli gipoteticheskoi gennoi seti”, Sib. zhurn. industr. matem., 7:3 (2004), 57–65 | MR | Zbl

[15] A. Yu. Kolesov, E. F. Mischenko, N. Kh. Rozov, “Rele s zapazdyvaniem i ego $C^1$-approksimatsiya”, Trudy MIAN, 216 (1997), 126–153, Nauka, M. | MR | Zbl

[16] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “The theory of nonclassical relaxation oscillations in singularly perturbed delay systems”, Sb. Math., 205:6 (2014), 781–842 | DOI | DOI | MR | Zbl

[17] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel, H.-O. Walther, Delay Equations. Functional-, Complex-, and Nonlinear Analysis, Applied Mathematical Sciences, 110, Springer, New York, 1995 | DOI | MR