Mots-clés : reaction–diffusion equations
@article{TMF_2024_220_1_a9,
author = {E. I. Nikulin and V. T. Volkov and A. G. Nikitin},
title = {On contrast structures in a problem of the~ baretting effect},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {154--163},
year = {2024},
volume = {220},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a9/}
}
TY - JOUR AU - E. I. Nikulin AU - V. T. Volkov AU - A. G. Nikitin TI - On contrast structures in a problem of the baretting effect JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 154 EP - 163 VL - 220 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a9/ LA - ru ID - TMF_2024_220_1_a9 ER -
E. I. Nikulin; V. T. Volkov; A. G. Nikitin. On contrast structures in a problem of the baretting effect. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 154-163. http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a9/
[1] N. A. Gorodetskaya, N. N. Kralina (red.), Avtovolnovye protsessy v sistemakh s diffuziei, IPF AN SSSR, Gorkii, 1981
[2] Yu. E. Volodin, A. I. Volpert, A. I. Ivanova, V. P. Fillipenko, K teorii effekta barettirovaniya, Preprint, OIKhF, Chernogolovka, 1988
[3] V. V. Barelko, V. M. Beibutyan, Yu. E. Volodin, Ya. B. Zeldovich, “Teplovye volny i neodnorodnye statsionarnye sostoyaniya v sisteme $\mathrm{Fe} + \mathrm{H}_2$”, Avtovolnovye protsessy v sistemakh s diffuziei, IPF AN SSSR, Gorkii, 1981, 135–148
[4] D. G. Löffler, L. D. Schmidt, “Steady state multiplicity of an electrically heated iron wire”, Chem. Eng. Sci., 31:12 (1976), 1207–1209 | DOI
[5] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR | Zbl
[6] A. B. Vasileva, V. F. Butuzov, N. N. Nefedov, “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Fundament. i prikl. matem., 4:3 (1998), 799–851 | MR | Zbl
[7] N. N. Nefedov, “Razvitie metodov asimptoticheskogo analiza perekhodnykh sloev v uravneniyakh reaktsiya-diffuziya-advektsiya: teoriya i primenenie”, Zh. vychisl. matem. i matem. fiz., 61:12 (2021), 2074–2094 | DOI | DOI
[8] N. N. Nefedov, E. I. Nikulin, “Existence and stability of periodic contrast structures in the reaction-advection-diffusion problem”, Russian J. Math. Phys., 22:2 (2015), 215–226 | DOI | MR
[9] N. N. Nefedov, L. Recke, K. R. Schneider, “Existence and asymptotic stability of periodic solutions with an interior layer of reaction-advection-diffusion equations”, J. Math. Anal. Appl., 405:1 (2013), 90–103 | DOI | MR
[10] N. N. Nefedov, E. I. Nikulin, “Suschestvovanie i asimptoticheskaya ustoichivost periodicheskikh dvumernykh kontrastnykh struktur v zadache so slaboi lineinoi advektsiei”, Matem. zametki, 106:5 (2019), 708–722 | DOI | DOI | MR
[11] N. N. Nefedov, E. I. Nikulin, “Suschestvovanie i ustoichivost periodicheskikh kontrastnykh struktur v zadache reaktsiya-advektsiya-diffuziya v sluchae sbalansirovannoi nelineinosti”, Differents. uravneniya, 53:4 (2017), 524–537 | DOI | DOI
[12] V. T. Volkov, N. N. Nefedov, “Razvitie asimptoticheskogo metoda differentsialnykh neravenstv dlya issledovaniya periodicheskikh kontrastnykh struktur v uravneniyakh reaktsiya-diffuziya”, Zh. vychisl. matem. i matem. fiz., 46:4 (2006), 615–623 | DOI | MR | Zbl
[13] N. N. Nefedov, K. Sakamoto, “Multi-dimensional stationary internal layers for spatially inhomogeneous reaction-diffusion equations with balanced nonlinearity”, Hiroshima Math. J., 33:3 (2003), 391–432 | DOI | MR
[14] V. T. Volkov, Asimptotika periodicheskikh rezhimov v sistemakh s maloi diffuziei i teploprovodnostyu, Diss. ... kand. fiz.-matem. nauk, MGU im. M. V. Lomonosova, M., 1990
[15] E. I. Nikulin, “Kontrastnye struktury v zadache reaktsiya-advektsiya-diffuziya, voznikayuschei v dreifo-diffuzionnoi modeli poluprovodnika, v sluchae negladkoi reaktsii”, TMF, 215:3 (2023), 360–376 | DOI | DOI | MR
[16] C. M. Cuesta, C. Schmeiser, “Stability of solitary waves in a semiconductor drift-diffusion model”, Siam J. Appl. Math., 68:5 (2008), 1423–1438 | DOI | MR