On contrast structures in a problem of the  baretting effect
Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 154-163 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We obtain a contrast-structure type solution of a system of equations for the baretting effect that include a nonlinear singularly perturbed parabolic equation and an additional nonlocal integral relation. We prove the existence of the solution with an internal transition layer and construct the asymptotic approximation of this solution. We obtain estimates of the main physical model parameters, which coincide with experimental data and the estimates obtained previously by other methods.
Keywords: singularly perturbed parabolic equations, contrast structures, internal layers, asymptotic methods, baretting effect.
Mots-clés : reaction–diffusion equations
@article{TMF_2024_220_1_a9,
     author = {E. I. Nikulin and V. T. Volkov and A. G. Nikitin},
     title = {On contrast structures in a problem of the~ baretting effect},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {154--163},
     year = {2024},
     volume = {220},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a9/}
}
TY  - JOUR
AU  - E. I. Nikulin
AU  - V. T. Volkov
AU  - A. G. Nikitin
TI  - On contrast structures in a problem of the  baretting effect
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 154
EP  - 163
VL  - 220
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a9/
LA  - ru
ID  - TMF_2024_220_1_a9
ER  - 
%0 Journal Article
%A E. I. Nikulin
%A V. T. Volkov
%A A. G. Nikitin
%T On contrast structures in a problem of the  baretting effect
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 154-163
%V 220
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a9/
%G ru
%F TMF_2024_220_1_a9
E. I. Nikulin; V. T. Volkov; A. G. Nikitin. On contrast structures in a problem of the  baretting effect. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 154-163. http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a9/

[1] N. A. Gorodetskaya, N. N. Kralina (red.), Avtovolnovye protsessy v sistemakh s diffuziei, IPF AN SSSR, Gorkii, 1981

[2] Yu. E. Volodin, A. I. Volpert, A. I. Ivanova, V. P. Fillipenko, K teorii effekta barettirovaniya, Preprint, OIKhF, Chernogolovka, 1988

[3] V. V. Barelko, V. M. Beibutyan, Yu. E. Volodin, Ya. B. Zeldovich, “Teplovye volny i neodnorodnye statsionarnye sostoyaniya v sisteme $\mathrm{Fe} + \mathrm{H}_2$”, Avtovolnovye protsessy v sistemakh s diffuziei, IPF AN SSSR, Gorkii, 1981, 135–148

[4] D. G. Löffler, L. D. Schmidt, “Steady state multiplicity of an electrically heated iron wire”, Chem. Eng. Sci., 31:12 (1976), 1207–1209 | DOI

[5] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR | Zbl

[6] A. B. Vasileva, V. F. Butuzov, N. N. Nefedov, “Kontrastnye struktury v singulyarno vozmuschennykh zadachakh”, Fundament. i prikl. matem., 4:3 (1998), 799–851 | MR | Zbl

[7] N. N. Nefedov, “Razvitie metodov asimptoticheskogo analiza perekhodnykh sloev v uravneniyakh reaktsiya-diffuziya-advektsiya: teoriya i primenenie”, Zh. vychisl. matem. i matem. fiz., 61:12 (2021), 2074–2094 | DOI | DOI

[8] N. N. Nefedov, E. I. Nikulin, “Existence and stability of periodic contrast structures in the reaction-advection-diffusion problem”, Russian J. Math. Phys., 22:2 (2015), 215–226 | DOI | MR

[9] N. N. Nefedov, L. Recke, K. R. Schneider, “Existence and asymptotic stability of periodic solutions with an interior layer of reaction-advection-diffusion equations”, J. Math. Anal. Appl., 405:1 (2013), 90–103 | DOI | MR

[10] N. N. Nefedov, E. I. Nikulin, “Suschestvovanie i asimptoticheskaya ustoichivost periodicheskikh dvumernykh kontrastnykh struktur v zadache so slaboi lineinoi advektsiei”, Matem. zametki, 106:5 (2019), 708–722 | DOI | DOI | MR

[11] N. N. Nefedov, E. I. Nikulin, “Suschestvovanie i ustoichivost periodicheskikh kontrastnykh struktur v zadache reaktsiya-advektsiya-diffuziya v sluchae sbalansirovannoi nelineinosti”, Differents. uravneniya, 53:4 (2017), 524–537 | DOI | DOI

[12] V. T. Volkov, N. N. Nefedov, “Razvitie asimptoticheskogo metoda differentsialnykh neravenstv dlya issledovaniya periodicheskikh kontrastnykh struktur v uravneniyakh reaktsiya-diffuziya”, Zh. vychisl. matem. i matem. fiz., 46:4 (2006), 615–623 | DOI | MR | Zbl

[13] N. N. Nefedov, K. Sakamoto, “Multi-dimensional stationary internal layers for spatially inhomogeneous reaction-diffusion equations with balanced nonlinearity”, Hiroshima Math. J., 33:3 (2003), 391–432 | DOI | MR

[14] V. T. Volkov, Asimptotika periodicheskikh rezhimov v sistemakh s maloi diffuziei i teploprovodnostyu, Diss. ... kand. fiz.-matem. nauk, MGU im. M. V. Lomonosova, M., 1990

[15] E. I. Nikulin, “Kontrastnye struktury v zadache reaktsiya-advektsiya-diffuziya, voznikayuschei v dreifo-diffuzionnoi modeli poluprovodnika, v sluchae negladkoi reaktsii”, TMF, 215:3 (2023), 360–376 | DOI | DOI | MR

[16] C. M. Cuesta, C. Schmeiser, “Stability of solitary waves in a semiconductor drift-diffusion model”, Siam J. Appl. Math., 68:5 (2008), 1423–1438 | DOI | MR