Keywords: stationary solutions, KPZ nonlinearities, asymptotic method of differential inequalities, boundary layer, Lyapunov stability.
@article{TMF_2024_220_1_a8,
author = {N. N. Nefedov and A. O. Orlov},
title = {Existence and stability of stationary solutions with boundary layers in a~system of fast and slow reaction{\textendash}diffusion{\textendash}advection equations with {KPZ} nonlinearities},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {137--153},
year = {2024},
volume = {220},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a8/}
}
TY - JOUR AU - N. N. Nefedov AU - A. O. Orlov TI - Existence and stability of stationary solutions with boundary layers in a system of fast and slow reaction–diffusion–advection equations with KPZ nonlinearities JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 137 EP - 153 VL - 220 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a8/ LA - ru ID - TMF_2024_220_1_a8 ER -
%0 Journal Article %A N. N. Nefedov %A A. O. Orlov %T Existence and stability of stationary solutions with boundary layers in a system of fast and slow reaction–diffusion–advection equations with KPZ nonlinearities %J Teoretičeskaâ i matematičeskaâ fizika %D 2024 %P 137-153 %V 220 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a8/ %G ru %F TMF_2024_220_1_a8
N. N. Nefedov; A. O. Orlov. Existence and stability of stationary solutions with boundary layers in a system of fast and slow reaction–diffusion–advection equations with KPZ nonlinearities. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 137-153. http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a8/
[1] V. F. Butuzov, N. N. Nefedov, K. R. Schneider, “Singularly perturbed problems in case of exchange of stabilities”, J. Math. Sci. (N. Y.), 121:1 (2004), 1973–2079 | DOI | MR
[2] M. J. Grimson, G. C. Barker, “Continuum model for the spatiotemporal growth of bacterial colonies”, Phys. Rev. E, 49:2 (1994), 1680–1684 | DOI
[3] J. Krug, H. Spohn, “Universality classes for deterministic surface growth”, Phys. Rev. A, 38:8 (1988), 4271–4283 | DOI | MR
[4] S. I. Pokhozhaev, “Ob uravneniyakh vida $\Delta u=f(x,u,Du)$”, Matem. sb., 113(155):2(10) (1980), 324–338 | DOI | MR | Zbl
[5] A. B. Muravnik, “Ob ubyvanii neotritsatelnykh reshenii singulyarnykh parabolicheskikh uravnenii s KPZ-nelineinostyami”, Zh. vychisl. matem. i matem. fiz., 60:8 (2020), 1422–1427 | DOI | DOI
[6] N. N. Nefedov, “Razvitie metodov asimptoticheskogo analiza perekhodnykh sloev v uravneniyakh reaktsii-diffuzii-advektsii: teoriya i primenenie”, Zh. vychisl. matem. i matem. fiz., 61:12 (2021), 2074–2094 | DOI | DOI
[7] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR | Zbl
[8] V. F. Butuzov, A. B. Vasileva, N. N. Nefedov, “Asimptoticheskaya teoriya kontrastnykh struktur (obzor)”, Avtomat. i telemekh., 1997, no. 7, 4–32 | MR | Zbl
[9] V. N. Denisov, A. B. Muravnik, “O stabilizatsii resheniya zadachi Koshi dlya kvazilineinykh parabolicheskikh uravnenii”, Differents. uravneniya, 38:3 (2002), 351–355 | DOI | MR
[10] N. N. Nefedov, A. O. Orlov, “Suschestvovanie i ustoichivost reshenii s vnutrennim perekhodnym sloem uravneniya reaktsiya-diffuziya-advektsiya s KPZ-nelineinostyu”, Differents. uravneniya, 59:8 (2023), 1007–1021 | DOI | DOI
[11] N. P. Các, “On an elliptic boundary value problem not in divergence form”, Proc. Amer. Math. Soc., 88:1 (1983), 47–52 | DOI | MR
[12] H. Amann, “Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces”, SIAM Rev., 18:4 (1976), 620–709 | DOI | MR
[13] P. C. Fife, M. M. Tang, “Comparison principles for reaction-diffusion systems: Irregular comparison functions and applications to questions of stability and speed of propagation of disturbances”, J. Differ. Equ., 40:2 (1981), 168–185 | DOI | MR
[14] N. N. Nefedov, A. O. Orlov, “O neustoichivykh kontrastnykh strukturakh v odnomernykh zadachakh reaktsiya-diffuziya-advektsiya s razryvnymi istochnikami”, TMF, 215:2 (2023), 297–310 | DOI | DOI | MR