Existence and stability of stationary solutions with boundary layers in a system of fast and slow reaction–diffusion–advection equations with KPZ nonlinearities
Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 137-153 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The existence of stationary solutions of singularly perturbed systems of reaction–diffusion–advection equations is studied in the case of fast and slow reaction–diffusion–advection equations with nonlinearities containing the gradient of the squared sought function (KPZ nonlinearities). The asymptotic method of differential inequalities is used to prove the existence theorems. The boundary layer asymptotics of solutions are constructed in the case of Neumann and Dirichlet boundary conditions. The case of quasimonotone sources and systems without the quasimonotonicity requirement is also considered.
Mots-clés : singular perturbation, reaction–diffusion–advection equations
Keywords: stationary solutions, KPZ nonlinearities, asymptotic method of differential inequalities, boundary layer, Lyapunov stability.
@article{TMF_2024_220_1_a8,
     author = {N. N. Nefedov and A. O. Orlov},
     title = {Existence and stability of stationary solutions with boundary layers in a~system of fast and slow reaction{\textendash}diffusion{\textendash}advection equations with {KPZ} nonlinearities},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {137--153},
     year = {2024},
     volume = {220},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a8/}
}
TY  - JOUR
AU  - N. N. Nefedov
AU  - A. O. Orlov
TI  - Existence and stability of stationary solutions with boundary layers in a system of fast and slow reaction–diffusion–advection equations with KPZ nonlinearities
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 137
EP  - 153
VL  - 220
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a8/
LA  - ru
ID  - TMF_2024_220_1_a8
ER  - 
%0 Journal Article
%A N. N. Nefedov
%A A. O. Orlov
%T Existence and stability of stationary solutions with boundary layers in a system of fast and slow reaction–diffusion–advection equations with KPZ nonlinearities
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 137-153
%V 220
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a8/
%G ru
%F TMF_2024_220_1_a8
N. N. Nefedov; A. O. Orlov. Existence and stability of stationary solutions with boundary layers in a system of fast and slow reaction–diffusion–advection equations with KPZ nonlinearities. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 137-153. http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a8/

[1] V. F. Butuzov, N. N. Nefedov, K. R. Schneider, “Singularly perturbed problems in case of exchange of stabilities”, J. Math. Sci. (N. Y.), 121:1 (2004), 1973–2079 | DOI | MR

[2] M. J. Grimson, G. C. Barker, “Continuum model for the spatiotemporal growth of bacterial colonies”, Phys. Rev. E, 49:2 (1994), 1680–1684 | DOI

[3] J. Krug, H. Spohn, “Universality classes for deterministic surface growth”, Phys. Rev. A, 38:8 (1988), 4271–4283 | DOI | MR

[4] S. I. Pokhozhaev, “Ob uravneniyakh vida $\Delta u=f(x,u,Du)$”, Matem. sb., 113(155):2(10) (1980), 324–338 | DOI | MR | Zbl

[5] A. B. Muravnik, “Ob ubyvanii neotritsatelnykh reshenii singulyarnykh parabolicheskikh uravnenii s KPZ-nelineinostyami”, Zh. vychisl. matem. i matem. fiz., 60:8 (2020), 1422–1427 | DOI | DOI

[6] N. N. Nefedov, “Razvitie metodov asimptoticheskogo analiza perekhodnykh sloev v uravneniyakh reaktsii-diffuzii-advektsii: teoriya i primenenie”, Zh. vychisl. matem. i matem. fiz., 61:12 (2021), 2074–2094 | DOI | DOI

[7] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR | Zbl

[8] V. F. Butuzov, A. B. Vasileva, N. N. Nefedov, “Asimptoticheskaya teoriya kontrastnykh struktur (obzor)”, Avtomat. i telemekh., 1997, no. 7, 4–32 | MR | Zbl

[9] V. N. Denisov, A. B. Muravnik, “O stabilizatsii resheniya zadachi Koshi dlya kvazilineinykh parabolicheskikh uravnenii”, Differents. uravneniya, 38:3 (2002), 351–355 | DOI | MR

[10] N. N. Nefedov, A. O. Orlov, “Suschestvovanie i ustoichivost reshenii s vnutrennim perekhodnym sloem uravneniya reaktsiya-diffuziya-advektsiya s KPZ-nelineinostyu”, Differents. uravneniya, 59:8 (2023), 1007–1021 | DOI | DOI

[11] N. P. Các, “On an elliptic boundary value problem not in divergence form”, Proc. Amer. Math. Soc., 88:1 (1983), 47–52 | DOI | MR

[12] H. Amann, “Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces”, SIAM Rev., 18:4 (1976), 620–709 | DOI | MR

[13] P. C. Fife, M. M. Tang, “Comparison principles for reaction-diffusion systems: Irregular comparison functions and applications to questions of stability and speed of propagation of disturbances”, J. Differ. Equ., 40:2 (1981), 168–185 | DOI | MR

[14] N. N. Nefedov, A. O. Orlov, “O neustoichivykh kontrastnykh strukturakh v odnomernykh zadachakh reaktsiya-diffuziya-advektsiya s razryvnymi istochnikami”, TMF, 215:2 (2023), 297–310 | DOI | DOI | MR