Mots-clés : oscillation problem
@article{TMF_2024_220_1_a7,
author = {P. N. Nesterov and J. I. Stavroulakis},
title = {Triple equivalence of the~oscillatory behavior for scalar delay differential equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {113--136},
year = {2024},
volume = {220},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a7/}
}
TY - JOUR AU - P. N. Nesterov AU - J. I. Stavroulakis TI - Triple equivalence of the oscillatory behavior for scalar delay differential equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 113 EP - 136 VL - 220 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a7/ LA - ru ID - TMF_2024_220_1_a7 ER -
%0 Journal Article %A P. N. Nesterov %A J. I. Stavroulakis %T Triple equivalence of the oscillatory behavior for scalar delay differential equations %J Teoretičeskaâ i matematičeskaâ fizika %D 2024 %P 113-136 %V 220 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a7/ %G ru %F TMF_2024_220_1_a7
P. N. Nesterov; J. I. Stavroulakis. Triple equivalence of the oscillatory behavior for scalar delay differential equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 113-136. http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a7/
[1] A. D. Myshkis, Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972 | MR
[2] G. K. Berikelashvili, O. M. Dzhokhadze, R. G. Koplatadze, “Ob odnom podkhode issledovaniya asimptoticheskikh svoistv reshenii obyknovennykh differentsialnykh uravnenii pervogo poryadka s zapazdyvaniem”, Differents. uravneniya, 44:1 (2008), 19–38 | DOI | MR
[3] R. G. Koplatadze, T. A. Chanturiya, “O koleblyuschikhsya i monotonnykh resheniyakh differentsialnogo uravneniya pervogo poryadka s otklonyayuschimsya argumentom”, Differents. uravneniya, 18:8 (1982), 1463–1465 | MR
[4] M. K. Kwong, “Oscillation of first-order delay equations”, J. Math. Anal. Appl., 156:1 (1991), 274–286 | DOI | MR
[5] G. Ladas, V. Lakshmikantham, “Sharp conditions for oscillations caused by delays”, Appl. Anal., 9:2 (1979), 93–98 | DOI
[6] G. Ladas, Y. G. Sficas, I. P. Stavroulakis, “Asymptotic behavior of solutions of retarded differential equations”, Proc. Amer. Math. Soc., 88:2 (1983), 247–253 | DOI | MR
[7] E. Braverman, J. I. Stavroulakis, Towards a resolution of the Buchanan–Lillo conjecture, arXiv: 2308.06295
[8] M. Pituk, I. P. Stavroulakis, J. I. Stavroulakis, “Explicit values of the oscillation bounds for linear delay differential equations with monotone argument”, Commun. Contemp. Math., 25:3 (2023), 2150087, 35 pp. | DOI | MR
[9] A. Elbert, I. P. Stavroulakis, “Oscillation and nonoscillation criteria for delay differential equations”, Proc. Amer. Math. Soc., 123:5 (1995), 1503–1510 | DOI | MR
[10] E. Kozakiewicz, “Oscillations for first order neutral differential equations”, Z. Angew. Math. Mech., 73:7–8 (1993), T813–T815 | MR
[11] J. Diblík, “Positive and oscillating solutions of differential equations with delay in critical case”, J. Comput. Appl. Math., 88:1 (1998), 185–202 | DOI | MR
[12] Y. Domshlak, I. P. Stavroulakis, “Oscillations of first-order delay differential equations in a critical state”, Appl. Anal., 61:3–4 (1996), 359–371 | DOI | MR
[13] E. Hille, “Non-oscillation theorems”, Trans. Amer. Math. Soc., 64:2 (1948), 234–252 | DOI | MR
[14] A. Kneser, “Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen”, Math. Ann., 42:3 (1893), 409–435 | DOI | MR
[15] X. H. Tang, J. S. Yu, Z. C. Wang, “Comparison theorems of oscillation of first order delay differential equations in a critical state with applications”, Kexue Tongbao (Chinese), 44:1 (1999), 26–31 | MR
[16] J. S. Yu, J. R. Yan, “Oscillation in first order neutral differential equations with ‘integrally small’ coefficients”, J. Math. Anal. Appl., 187:2 (1994), 361–370 | DOI
[17] J. H. Shen, X. H. Tang, “New nonoscillation criteria for delay differential equations”, J. Math. Anal. Appl., 290:1 (2004), 1–9 | DOI | MR
[18] X. H. Tang, J. S. Yu, “Oscillation of first order delay differential equations”, J. Math. Anal. Appl., 248:1 (2000), 247–259 | DOI | MR
[19] J. S. Yu, X. H. Tang, “Comparison theorems in delay differential equations in a critical state and applications”, J. London Math. Soc. (2), 63:1 (2001), 188–204 | DOI | MR
[20] R. Koplatadze, G. Kvinikadze, I. P. Stavroulakis, “Oscillation of second order linear delay differential equations”, Funct. Differ. Equ., 7:1–2 (2000), 121–145 | MR | Zbl
[21] J. J. A. M. Brands, “Oscillation theorems for second-order functional differential equations”, J. Math. Anal. Appl., 63:1 (1978), 54–64 | DOI | MR
[22] Q. Kong, “Interval criteria for oscillation of second-order linear ordinary differential equations”, J. Math. Anal. Appl., 229:1 (1999), 258–270 | DOI | MR
[23] M. K. Kwong, A. Zettl, “Integral inequalities and second order linear oscillation”, J. Differ. Equ., 45:1 (1982), 16–33 | DOI | MR
[24] M. Naito, “Asymptotic behavior of solutions of second order differential equations with integrable coefficients”, Trans. Amer. Math. Soc., 282:2 (1984), 577–588 | DOI | MR
[25] D. Willett, “On the oscillatory behavior of the solutions of second order linear differential equations”, Ann. Polon. Math., 21:2 (1969), 175–194 | DOI | MR
[26] J. S. W. Wong, “Oscillation and nonoscillation of solutions of second order linear differential equations with integrable coefficients”, Trans. Amer. Math. Soc., 144 (1969), 197–215 | DOI | MR
[27] J. R. Yan, “Oscillation theorems for second order linear differential equations with damping”, Proc. Amer. Math. Soc., 98:2 (1986), 276–282 | DOI | MR
[28] P. Nesterov, “On oscillation of solutions of scalar delay differential equation in critical case”, Electron. J. Qual. Theory Diff. Equ., 2022:59 (2022), 1–31 | DOI | MR
[29] Y. Cao, “The oscillation and exponential decay rate of solutions of differential delay equations”, Oscillation and Dynamics in Delay Equations (San Francisco, CA, January 16–19, 1991), Contemporary Mathematics, 129, eds. J. R. Graef, J. K. Hale, AMS, Providence, RI, 1992, 43–54 | DOI | MR
[30] J. Baštinec, L. Berezansky, J. Diblík, Z. Šmarda, “On the critical case in oscillation for differential equations with a single delay and with several delays”, Abstr. Appl. Anal., 2010 (2010), 417869, 20 pp. | DOI | MR
[31] J. Diblík, Z. Svoboda, Z. Šmarda, “Explicit criteria for the existence of positive solutions for a scalar differential equation with variable delay in the critical case”, Comput. Math. Appl., 56:2 (2008), 556–564 | DOI | MR
[32] B. Li, “Oscillation of first order delay differential equations”, Proc. Amer. Math. Soc., 124:12 (1996), 3729–3737 | DOI | MR
[33] J. R. Claeyssen, “Effect of delays on functional differential equations”, J. Differ. Equ., 20:2 (1976), 404–440 | DOI | MR
[34] R. D. Driver, D. W. Sasser, M. L. Slater, “The equation $x'(t)=ax(t)+bx(t-\tau)$ with ‘small’ delay”, Amer. Math. Monthly, 80:9 (1973), 990–995 | DOI | MR
[35] P. Nesterov, “On some extension of center manifold method to functional differential equations with oscillatory decreasing coefficients and variable delays”, J. Dyn. Differ. Equ., 30:4 (2018), 1797–1816 | DOI | MR
[36] J. Carr, Applications of Centre Manifold Theory, Applied Mathematical Sciences, 35, Springer, New York, 1982 | DOI | MR
[37] P. Nesterov, “Asymptotic integration of functional differential systems with oscillatory decreasing coefficients: a center manifold approach”, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), 33, 43 pp. | DOI | MR
[38] J. K. Hale, Theory of Functional Differential Equations, Applied Mathematical Sciences, 3, Springer, New York, 1977 | DOI | MR
[39] J. K. Hale, S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer, New York, 1993 | DOI | MR
[40] E. Kozakiewicz, “Über die nichtschwingenden Lösungen einer linearen Differentialgleichung mit nacheilendem Argument”, Math. Nachr., 32:1–2 (1966), 107–113 | DOI | MR
[41] I. Györi, M. Pituk, “Comparison theorems and asymptotic equilibrium for delay differential and difference equations”, Dynam. Systems Appl., 5:2 (1996), 277–302 | MR
[42] S. M. Labovskii, O lineinykh differentsialnykh neravenstvakh, Diss. ... kand. fiz.-matem. nauk, Matematicheskii institut im. A. M. Razmadze, Tbilisi, 1975
[43] R. P. Agarwal, L. Berezansky, E. Braverman, A. Domoshnitsky, Nonoscillation Theory of Functional Differential Equations with Applications, Springer, New York, 2012 | DOI | MR
[44] J. Diblík, “Asymptotic representation of solutions of equation $\dot y(t)=\beta(t)[y(t)-y(t-\tau(t))]$”, J. Math. Anal. Appl., 217:1 (1998), 200–215 | DOI | MR
[45] J. Čermák, “The asymptotic bounds of solutions of linear delay systems”, J. Math. Anal. Appl., 225:2 (1998), 373–388 | DOI | MR
[46] J. Diblík, “ Long-time behaviour of solutions of delayed-type linear differential equations”, Electron. J. Qual. Theory Differ. Equ., 2018 (2018), 47, 23 pp. | MR
[47] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel, H.-O. Walther, Delay Equations: Functional-, Complex-, and Nonlinear Analysis, Applied Mathematical Sciences, 110, Springer Science and Business Media, New York, 1995 | DOI | MR
[48] S. Bodine, D. A. Lutz, Asymptotic Integration of Differential and Difference Equations, Lecture Notes in Mathematics, 2129, Springer, Cham, 2015 | DOI | MR
[49] E. Braverman, A. Domoshnitsky, J. I. Stavroulakis, “Semicycles and correlated asymptotics of oscillatory solutions to second-order delay differential equations”, J. Math. Anal. Appl., 531:2 (2024), 127875, 22 pp. | DOI | Zbl
[50] J. Buchanan, On the stability of solutions of a differential-difference equation with a variable lag, Ph.D. thesis, Purdue University, Lafayette, Ind., 1964
[51] J. Buchanan, “Growth of oscillatory solutions of $y'(x)=y(x-d(x))$”, SIAM J. Appl. Math., 20:4 (1971), 670–676 ; “Bounds on the growth of a class of oscillatory solutions of $y'(x)=my(x-d(x))$ with bounded delay”, 27:4 (1974), 539–543 | DOI | MR | DOI | MR
[52] J. C. Lillo, “Oscillatory solutions of the equation $y'(x)=m(x)y(x-n(x))$”, J. Differ. Equ., 6:1 (1969), 1–35 | DOI | MR
[53] J. I. Stavroulakis, E. Braverman, “Oscillation, convergence, and stability of linear delay differential equations”, J. Differ. Equ., 293 (2021), 282–312 | DOI | MR
[54] P. N. Nesterov, “Metod usredneniya v zadache asimptoticheskogo integrirovaniya sistem s kolebatelno ubyvayuschimi koeffitsientami”, Differents. uravneniya, 43:6 (2007), 731–742 | DOI | MR
[55] N. Levinson, “The asymptotic nature of solutions of linear systems of differential equations”, Duke Math. J., 15:1 (1948), 111–126 | DOI | MR