Keywords: discontinuous coefficient, internal transition layer, method of differential inequalities, upper and lower solutions, asymptotically stable solution, moving front.
@article{TMF_2024_220_1_a6,
author = {N. T. Levashova and E. A. Chunzhuk and A. O. Orlov},
title = {Stabilization of the~front in a~medium with discontinuous characteristics},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {93--112},
year = {2024},
volume = {220},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a6/}
}
TY - JOUR AU - N. T. Levashova AU - E. A. Chunzhuk AU - A. O. Orlov TI - Stabilization of the front in a medium with discontinuous characteristics JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 93 EP - 112 VL - 220 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a6/ LA - ru ID - TMF_2024_220_1_a6 ER -
N. T. Levashova; E. A. Chunzhuk; A. O. Orlov. Stabilization of the front in a medium with discontinuous characteristics. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 93-112. http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a6/
[1] Ya. B. Zeldovich, G. I. Barenblatt, V. B. Librovich, G. M. Makhviladze, Matematicheskaya teoriya goreniya i vzryva, Nauka, M., 1980 | MR | MR
[2] R. A. Fitzhugh, “Impulses and physiological states in theoretical model of nerve membrane”, Biophys. J., 1:6 (1961), 445–466 | DOI
[3] A. E. Sidorova, N. T. Levashova, A. E. Semina, “Avtovolnovaya model morfogeneza megapolisov v predstavleniyakh neodnorodnykh aktivnykh sred”, Izv. RAN. Ser. fiz., 83:1 (2019), 106–112 | DOI
[4] N. Levashova, A. Sidorova, A. Semina, Mingkang Ni, “A spatio-temporal autowave model of shanghai territory development”, Sustainability, 11:13 (2019), 3658, 13 pp. | DOI
[5] P. C. Fife, J. B. McLeod, “The approach of solutions of nonlinear diffusion equations to travelling front solutions”, Arch. Rational Mech. Anal., 65:4 (1977), 335–361 | DOI | MR
[6] Ya. I. Kanel, “O stabilizatsii reshenii uravnenii teorii goreniya pri finitnykh nachalnykh funktsiyakh”, Matem. sb., 65:3 (1964), 398–413 | MR | Zbl
[7] A. I. Volpert, V. A. Volpert, Vl. A. Volpert, Traveling Wave Solutions of Parabolic Systems, Translations of Mathematical Monographs, 140, AMS, Providence, RI, 1994 | MR
[8] N. N. Nefedov, “Razvitie metodov asimptoticheskogo analiza perekhodnykh sloev v uravneniyakh reaktsii-diffuzii-advektsii: teoriya i primenenie”, Zh. vychisl. matem. i matem. fiz., 61:12 (2021), 2074–2094 | DOI | DOI
[9] Yu. V. Bozhevolnov, N. N. Nefedov, “Dvizhenie fronta v parabolicheskoi zadache reaktsiya-diffuziya”, Zh. vychisl. matem. i matem. fiz., 50:2 (2010), 276–285 | DOI | MR
[10] N. T. Levashova, O. A. Nikolaeva, A. D. Pashkin, “Modelirovanie raspredeleniya temperatury na granitse razdela voda-vozdukh s ispolzovaniem teorii kontrastnykh struktur”, Vestn. Mosk. un-ta. Ser. 3. Fiz. Astron., 2015, no. 5, 12–16 | DOI
[11] N. N. Nefedov, M. K. Ni, “Vnutrennie sloi v odnomernom uravnenii reaktsiya-diffuziya s razryvnym reaktivnym chlenom”, Zh. vychisl. matem. i matem. fiz., 55:12 (2015), 2042–2048 | DOI | DOI | MR
[12] N. N. Nefedov, N. T. Levashova, A. O. Orlov, “Asimptoticheskaya ustoichivost statsionarnogo resheniya s vnutrennim perekhodnym sloem zadachi reaktsiya-diffuziya s razryvnym reaktivnym slagaemym”, Vestn. Mosk. un-ta. Ser. 3. Fiz. Astron., 2018, no. 6, 3–10 | DOI
[13] N. N. Nefedov, E. I. Nikulin, A. O. Orlov, “Existence of contrast structures in a problem with discontinuous reaction and advection”, Russ. J. Math. Phys., 29:2 (2022), 214–224 | DOI | MR
[14] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | DOI | MR
[15] V. F. Butuzov, N. N. Nefedov, K. R. Shnaider, “O formirovanii i rasprostranenii rezkikh perekhodnykh sloev v parabolicheskikh zadachakh”, Vestn. Mosk. un-ta. Ser. 3. Fiz. Astron., 2005, no. 1, 9–13 | MR
[16] C. V. Pao, Nonlinear Parabolic and Elliptic Equations, Plenum Press, New York, London, 2004 | DOI | MR
[17] V. N. Pavlenko, O. V. Ulyanova, “Metod verkhnikh i nizhnikh reshenii dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Izv. vuzov. Matem., 1998, no. 11, 69–76 | MR | Zbl
[18] V. N. Pavlenko, O. V. Ulyanova, “Metod verkhnikh i nizhnikh reshenii dlya uravnenii parabolicheskogo tipa s razryvnymi nelineinostyami”, Differents. uravneniya, 38:4 (2002), 499–504 | DOI | MR
[19] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR
[20] B. V. Tischenko, “Suschestvovanie, lokalnaya edinstvennost i asimptoticheskaya ustoichivost pogransloinogo resheniya kraevoi zadachi Neimana dlya sistemy dvukh nelineinykh uravnenii s raznymi stepenyami malogo parametra”, Vestn. Mosk. un-ta. Ser. 3. Fiz. Astron., 2021, no. 5, 31–37 | DOI
[21] V. F. Butuzov, N. T. Levashova, A. A. Melnikova, “Kontrastnaya struktura tipa stupenki v singulyarno vozmuschennoi sisteme uravnenii s razlichnymi stepenyami malogo parametra”, Zh. vychisl. matem. i matem. fiz., 52:11 (2012), 1983–2003 | DOI | MR
[22] K. A. Kotsyubinskii, N. T. Levashova, A. A. Melnikova, “Stabilizatsiya resheniya vida dvizhuschegosya fronta v uravnenii reaktsiya-diffuziya”, Vestn. Mosk. un-ta. Ser. 3. Fiz. Astron., 2021, no. 6, 3–11
[23] D. V. Lukyanenko, A. A. Borzunov, M. A. Shishlenin, “Solving coefficient inverse problems for nonlinear singularly perturbed equations of the reaction-diffusion-advection type with data on the position of a reaction front”, Commun. Nonlinear Sci. Numer. Simul., 99 (2021), 105824, 10 pp. | DOI | MR