Mechanism for the formation of an inhomogeneous nanorelief and bifurcations in a nonlocal erosion equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 74-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We continue studies of the nonlocal erosion equation that is used as a mathematical model of the formation of a spatially inhomogeneous relief on semiconductor surfaces. We show that such a relief can form as a result of local bifurcations in the case where the stability of the spatially homogeneous equilibrium state changes. We consider a periodic boundary-value problem and study its codimension-$2$ bifurcations. For solutions describing an inhomogeneous relief, we obtain asymptotic formulas and study their stability. The analysis of the mathematical problem is based on modern methods of the theory of dynamical systems with an infinite-dimensional phase space, in particular, on the method of integral manifolds and on the theory of normal forms.
Keywords: nanorelief formation, stability, integral manifold, normal form.
Mots-clés : nonlocal erosion equation, bifurcation
@article{TMF_2024_220_1_a5,
     author = {D. A. Kulikov},
     title = {Mechanism for the~formation of an~inhomogeneous nanorelief and bifurcations in a~nonlocal erosion equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {74--92},
     year = {2024},
     volume = {220},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a5/}
}
TY  - JOUR
AU  - D. A. Kulikov
TI  - Mechanism for the formation of an inhomogeneous nanorelief and bifurcations in a nonlocal erosion equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 74
EP  - 92
VL  - 220
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a5/
LA  - ru
ID  - TMF_2024_220_1_a5
ER  - 
%0 Journal Article
%A D. A. Kulikov
%T Mechanism for the formation of an inhomogeneous nanorelief and bifurcations in a nonlocal erosion equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 74-92
%V 220
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a5/
%G ru
%F TMF_2024_220_1_a5
D. A. Kulikov. Mechanism for the formation of an inhomogeneous nanorelief and bifurcations in a nonlocal erosion equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 74-92. http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a5/

[1] P. Sigmund, “Theory of sputtering I. Sputtering yield of amorphous and polycrystalline targets”, Phys. Rev., 184:2 (1969), 383–416 | DOI

[2] Y. Yamamura, S. Shindo, “An empirical formula for angular dependence of sputtering yields”, Radiation Effects, 80:1–2 (1984), 57–72 | DOI

[3] K. Elst, W. Vandervorst, “Influence of the composition of the altered layer on the ripple formation”, J. Vac. Sci. Technol. A, 12:6 (1994), 3205–3216 | DOI

[4] P. Sigmund, “A mechanism of surface micro-roughening by ion bombardment”, J. Mater. Sci., 8:2 (1973), 1545–1553 | DOI

[5] V. K. Smirnov, D. S. Kibalov, P. A. Lepshin, V. I. Bachurin, “Vliyanie topograficheskikh nerovnostei na protsess obrazovaniya volnoobraznogo mikrorelefa na poverkhnosti kremniya”, Izv. RAN. Ser. fiz., 64:4 (2000), 626–630

[6] A. S. Rudyi, A. N. Kulikov, A. V. Metlitskaya, “Samoorganizatsiya nanostruktur v ramkakh prostranstvenno-nelokalnoi modeli erozii poverkhnosti kremniya ionnoi bombardirovkoi”, Kremnievye nanostruktury. Fizika. Tekhnologiya. Modelirovanie, ed. V. I. Rudakov, Izd-vo “Indigo”, Yaroslavl, 2014, 8–57

[7] R. M. Bradley, J. M. E. Harper, “Theory of ripple topography induced by ion bombardment”, J. Vac. Sci. Technol. A, 6 (1988), 2390–2395 | DOI

[8] A. N. Kulikov, D. A. Kulikov, “Formirovanie volnoobraznykh nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Zh. vychisl. matem. i matem. fiz., 52:5 (2012), 930–945 | DOI | MR

[9] A. N. Kulikov, D. A. Kulikov, “Lokalnye bifurkatsii v uravneniyakh Kana–\allowbreakKhilliarda, Kuramoto–\allowbreakSivashinskogo i ikh obobscheniyakh”, Zh. vychisl. matem. i matem. fiz., 59:4 (2019), 670–683 | DOI | DOI

[10] D. A. Kulikov, “Bifurkatsii patternov v nelokalnom uravnenii erozii”, Avtomat. i telemekh., 2023, no. 11, 36–54 | DOI

[11] C. G. Krein, Lineinye uravneniya v banakhovom prostranstve, Nauka, M., 1971 | DOI | MR | MR | Zbl

[12] P. E. Sobolevskii, “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. MMO, 10, GIFML, M., 1961, 297–350 | MR | Zbl

[13] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950 | DOI | MR | MR

[14] A. N. Kulikov, “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoichivosti i teorii kolebanii, Sbornik nauchnykh trudov, Izd-vo YarGU, Yaroslavl, 1976, 114–129 | MR

[15] A. N. Kulikov, “Inertsialnye invariantnye mnogoobraziya nelineinoi polugruppy operatorov v gilbertovom prostranstve”, Materialy Vserossiiskoi nauchnoi konferentsii “Differentsialnye uravneniya i ikh prilozheniya”, posvyaschennoi 85-letiyu professora M. T. Terekhina (Ryazanskii gosudarstvennyi universitet im. S. A. Esenina, Ryazan, 17–18 maya 2019 g. Chast 2), Itogi nauki i tekhn. Ser. Sovrem. matem. i ee pril. Temat. obz., 186, VINITI, M., 2020, 57–66 | DOI

[16] J. E. Marsden, M. McCracken, The Hopf Bifurcation and its Applications, Springer, New York, 1976 | MR

[17] A. N. Kulikov, D. A. Kulikov, “Nelokalnaya model formirovaniya relefa pod vozdeistviem potoka ionov. Neodnorodnye nanostruktury”, Matem. modelirovanie, 28:3 (2016), 33–50 | MR

[18] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR

[19] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, Applied Mathematical Sciences, 42, Springer, New York, 1983 | DOI | MR

[20] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR

[21] S. A. Akhmanov, M. A. Vorontsov, “Neustoichivosti i struktury v kogerentnykh nelineino-opticheskikh sistemakh, okhvachennykh dvumernoi obratnoi svyazyu”, Nelineinye volny. Dinamika i evolyutsiya, Nauka, M., 1989, 228–238

[22] A. V. Razgulin, “Ustoichivost bifurkatsionnykh avtokolebanii v nelineinoi parabolicheskoi zadache s preobrazovannym argumentom”, Zh. vychisl. matem. i matem. fiz., 33:10 (1993), 1499–1508 | MR | Zbl

[23] A. L. Skubachevskii, “O bifurkatsii Khopfa dlya kvazilineinogo parabolicheskogo funktsionalno-differentsialnogo uravneniya”, Differents. uravneniya, 34:10, 1394–1401 | MR

[24] S. A. Kaschenko, “Asimptotika prostranstvenno-neodnorodnykh struktur v kogerentnykh nelineino-opticheskikh sistemakh”, Zh. vychisl. matem. i matem. fiz., 31:3 (1991), 467–473 | MR | Zbl

[25] I. S. Kaschenko, S. A. Kaschenko, “Bystro ostsilliruyuschie prostranstvenno-neodnorodnye struktury v kogerentnykh nelineino-opticheskikh sistemakh”, Dokl. RAN, 435:1 (2010), 14–17 | DOI

[26] A. Kulkov, D. Kulikov, “Invariant varieties of the periodic boundary value problem of the nonlocal Ginzburg–Landau equation”, Math. Methods Appl. Sci., 44:15 (2021), 11985–11997 | DOI | MR

[27] A. N. Kulikov, D. A. Kulikov, “Invariantnye mnogoobraziya slabodissipativnogo varianta nelokalnogo uravneniya Ginzburga–Landau”, Avtomat. i telemekh., 2021, no. 2, 94–110 | DOI | DOI

[28] A. N. Kulikov, D. A. Kulikov, “Lokalnye bifurkatsii i globalnyi attraktor dvukh versii slabodissipativnogo uravneniya Ginzburga–Landau”, TMF, 212:1 (2022), 40–61 | DOI | DOI | MR

[29] A. N. Kulikov, D. A. Kulikov, “Invariantnye mnogoobraziya, globalnyi attraktor integro-differentsialnogo uravneniya Ginzburga–Landau”, Differents. uravneniya, 58:11 (2022), 1500–1514 | DOI | DOI