Mots-clés : nonlocal erosion equation, bifurcation
@article{TMF_2024_220_1_a5,
author = {D. A. Kulikov},
title = {Mechanism for the~formation of an~inhomogeneous nanorelief and bifurcations in a~nonlocal erosion equation},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {74--92},
year = {2024},
volume = {220},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a5/}
}
TY - JOUR AU - D. A. Kulikov TI - Mechanism for the formation of an inhomogeneous nanorelief and bifurcations in a nonlocal erosion equation JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 74 EP - 92 VL - 220 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a5/ LA - ru ID - TMF_2024_220_1_a5 ER -
D. A. Kulikov. Mechanism for the formation of an inhomogeneous nanorelief and bifurcations in a nonlocal erosion equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 74-92. http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a5/
[1] P. Sigmund, “Theory of sputtering I. Sputtering yield of amorphous and polycrystalline targets”, Phys. Rev., 184:2 (1969), 383–416 | DOI
[2] Y. Yamamura, S. Shindo, “An empirical formula for angular dependence of sputtering yields”, Radiation Effects, 80:1–2 (1984), 57–72 | DOI
[3] K. Elst, W. Vandervorst, “Influence of the composition of the altered layer on the ripple formation”, J. Vac. Sci. Technol. A, 12:6 (1994), 3205–3216 | DOI
[4] P. Sigmund, “A mechanism of surface micro-roughening by ion bombardment”, J. Mater. Sci., 8:2 (1973), 1545–1553 | DOI
[5] V. K. Smirnov, D. S. Kibalov, P. A. Lepshin, V. I. Bachurin, “Vliyanie topograficheskikh nerovnostei na protsess obrazovaniya volnoobraznogo mikrorelefa na poverkhnosti kremniya”, Izv. RAN. Ser. fiz., 64:4 (2000), 626–630
[6] A. S. Rudyi, A. N. Kulikov, A. V. Metlitskaya, “Samoorganizatsiya nanostruktur v ramkakh prostranstvenno-nelokalnoi modeli erozii poverkhnosti kremniya ionnoi bombardirovkoi”, Kremnievye nanostruktury. Fizika. Tekhnologiya. Modelirovanie, ed. V. I. Rudakov, Izd-vo “Indigo”, Yaroslavl, 2014, 8–57
[7] R. M. Bradley, J. M. E. Harper, “Theory of ripple topography induced by ion bombardment”, J. Vac. Sci. Technol. A, 6 (1988), 2390–2395 | DOI
[8] A. N. Kulikov, D. A. Kulikov, “Formirovanie volnoobraznykh nanostruktur na poverkhnosti ploskikh podlozhek pri ionnoi bombardirovke”, Zh. vychisl. matem. i matem. fiz., 52:5 (2012), 930–945 | DOI | MR
[9] A. N. Kulikov, D. A. Kulikov, “Lokalnye bifurkatsii v uravneniyakh Kana–\allowbreakKhilliarda, Kuramoto–\allowbreakSivashinskogo i ikh obobscheniyakh”, Zh. vychisl. matem. i matem. fiz., 59:4 (2019), 670–683 | DOI | DOI
[10] D. A. Kulikov, “Bifurkatsii patternov v nelokalnom uravnenii erozii”, Avtomat. i telemekh., 2023, no. 11, 36–54 | DOI
[11] C. G. Krein, Lineinye uravneniya v banakhovom prostranstve, Nauka, M., 1971 | DOI | MR | MR | Zbl
[12] P. E. Sobolevskii, “Ob uravneniyakh parabolicheskogo tipa v banakhovom prostranstve”, Tr. MMO, 10, GIFML, M., 1961, 297–350 | MR | Zbl
[13] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950 | DOI | MR | MR
[14] A. N. Kulikov, “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoichivosti i teorii kolebanii, Sbornik nauchnykh trudov, Izd-vo YarGU, Yaroslavl, 1976, 114–129 | MR
[15] A. N. Kulikov, “Inertsialnye invariantnye mnogoobraziya nelineinoi polugruppy operatorov v gilbertovom prostranstve”, Materialy Vserossiiskoi nauchnoi konferentsii “Differentsialnye uravneniya i ikh prilozheniya”, posvyaschennoi 85-letiyu professora M. T. Terekhina (Ryazanskii gosudarstvennyi universitet im. S. A. Esenina, Ryazan, 17–18 maya 2019 g. Chast 2), Itogi nauki i tekhn. Ser. Sovrem. matem. i ee pril. Temat. obz., 186, VINITI, M., 2020, 57–66 | DOI
[16] J. E. Marsden, M. McCracken, The Hopf Bifurcation and its Applications, Springer, New York, 1976 | MR
[17] A. N. Kulikov, D. A. Kulikov, “Nelokalnaya model formirovaniya relefa pod vozdeistviem potoka ionov. Neodnorodnye nanostruktury”, Matem. modelirovanie, 28:3 (2016), 33–50 | MR
[18] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR
[19] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields, Applied Mathematical Sciences, 42, Springer, New York, 1983 | DOI | MR
[20] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973 | MR
[21] S. A. Akhmanov, M. A. Vorontsov, “Neustoichivosti i struktury v kogerentnykh nelineino-opticheskikh sistemakh, okhvachennykh dvumernoi obratnoi svyazyu”, Nelineinye volny. Dinamika i evolyutsiya, Nauka, M., 1989, 228–238
[22] A. V. Razgulin, “Ustoichivost bifurkatsionnykh avtokolebanii v nelineinoi parabolicheskoi zadache s preobrazovannym argumentom”, Zh. vychisl. matem. i matem. fiz., 33:10 (1993), 1499–1508 | MR | Zbl
[23] A. L. Skubachevskii, “O bifurkatsii Khopfa dlya kvazilineinogo parabolicheskogo funktsionalno-differentsialnogo uravneniya”, Differents. uravneniya, 34:10, 1394–1401 | MR
[24] S. A. Kaschenko, “Asimptotika prostranstvenno-neodnorodnykh struktur v kogerentnykh nelineino-opticheskikh sistemakh”, Zh. vychisl. matem. i matem. fiz., 31:3 (1991), 467–473 | MR | Zbl
[25] I. S. Kaschenko, S. A. Kaschenko, “Bystro ostsilliruyuschie prostranstvenno-neodnorodnye struktury v kogerentnykh nelineino-opticheskikh sistemakh”, Dokl. RAN, 435:1 (2010), 14–17 | DOI
[26] A. Kulkov, D. Kulikov, “Invariant varieties of the periodic boundary value problem of the nonlocal Ginzburg–Landau equation”, Math. Methods Appl. Sci., 44:15 (2021), 11985–11997 | DOI | MR
[27] A. N. Kulikov, D. A. Kulikov, “Invariantnye mnogoobraziya slabodissipativnogo varianta nelokalnogo uravneniya Ginzburga–Landau”, Avtomat. i telemekh., 2021, no. 2, 94–110 | DOI | DOI
[28] A. N. Kulikov, D. A. Kulikov, “Lokalnye bifurkatsii i globalnyi attraktor dvukh versii slabodissipativnogo uravneniya Ginzburga–Landau”, TMF, 212:1 (2022), 40–61 | DOI | DOI | MR
[29] A. N. Kulikov, D. A. Kulikov, “Invariantnye mnogoobraziya, globalnyi attraktor integro-differentsialnogo uravneniya Ginzburga–Landau”, Differents. uravneniya, 58:11 (2022), 1500–1514 | DOI | DOI