Mots-clés : existence
@article{TMF_2024_220_1_a4,
author = {A. N. Kulikov},
title = {On the~uniqueness problem for a~central invariant manifold},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {59--73},
year = {2024},
volume = {220},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a4/}
}
A. N. Kulikov. On the uniqueness problem for a central invariant manifold. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 59-73. http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a4/
[1] V. A. Pliss, “Printsip svedeniya v teorii ustoichivosti dvizheniya”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1297–1324 | MR | Zbl
[2] Al. Kelley, “The stable, center-stable, center, center-unstable, unstable mamifolds”, J. Differ. Equ., 3:4 (1967), 546–570 | DOI | MR
[3] J. E. Marsden, M. McCraken, The Hopf Bifurcation and Its Applications, Applied Mathematical Sciences, 19, Springer, New York, 1976 | DOI | MR
[4] A. M. Lyapunov, Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhizdat, M.–L., 1950 | MR | MR | Zbl
[5] I. G. Malkin, Teoriya ustoichivosti dvizheniya, Nauka, M., 1966 | MR | Zbl
[6] S. Lefshets, Geometricheskaya teoriya differentsialnykh uravnenii, IL, M., 1961 | MR | MR | Zbl
[7] Zh. Palis, V. Melu, Geometricheskaya teoriya dinamicheskikh sistem, Mir, M., 1986 | DOI | MR | MR | Zbl
[8] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | MR | Zbl | Zbl
[9] A. N. Kulikov, “O gladkikh invariantnykh mnogoobraziyakh polugruppy nelineinykh operatorov v banakhovom prostranstve”, Issledovaniya po ustoichivosti i teorii kolebanii, Sbornik nauchnykh trudov, Izd-vo YarGU, Yaroslavl, 1976, 114–129 | MR
[10] A. N. Kulikov, “Inertsialnye invariantnye mnogoobraziya nelineinoi polugruppy operatorov v gilbertovom prostranstve”, Materialy Vserossiiskoi nauchnoi konferentsii “Differentsialnye uravneniya i ikh prilozheniya”, posvyaschennoi 85-letiyu professora M. T. Terekhina (Ryazanskii gosudarstvennyi universitet im. S. A. Esenina, Ryazan, 17–18 maya 2019 g. Chast 2), Itogi nauki i tekhn. Ser. Sovrem. matem. i ee pril. Temat. obz., 186, VINITI, M., 2020, 57–66 | DOI
[11] V. I. Arnold, Dopolnitelnye glavy obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978 | MR
[12] A. N. Kulikov, “Odno zamechanie o svoistvakh dvumernykh invariantnykh mnogoobrazii”, Issledovanie po ustoichivosti i teorii kolebanii, Mezhvuz. sb., Izd-vo YarGU, Yaroslavl, 1978, 77–80
[13] A. N. Kulikov, “O edinstvennosti invariantnykh mnogoobrazii”, Issledovanie po ustoichivosti i teorii kolebanii, Mezhvuz. sb., Izd-vo YarGU, Yaroslavl, 1979, 81–85
[14] M. W. Hirsch, C. C. Pugh, M. Shub, “The local theory of normally hyperbolic, invariant, compact manifolds”, Invariant Manifolds, Lecture Notes in Mathematics, 583, Springer, Berlin, 1977, 39–53 | DOI | MR
[15] A. N. Kulikov, D. A. Kulikov, A. V. Sekatskaya, Invariantnye mnogoobraziya: nekotorye prilozheniya k teorii dinamicheskikh sistem, Izd-vo “Filigran”, Yaroslavl, 2022
[16] E. A. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958 | MR | Zbl
[17] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR
[18] L. P. Shilnikov, A. L. Shilnikov, D. V. Turaev, L. Chua, Metody kachestvennoi teorii v nelineinoi dinamike, Izd-vo IKI, M.–Izhevsk, 2004 | MR | Zbl