@article{TMF_2024_220_1_a3,
author = {P. E. Bulatov and Han Cheng and Yuxuan Wei and V. T. Volkov and N. T. Levashova},
title = {Boundary control problem for the~reaction{\textendash}advection{\textendash}diffusion equation with a~modulus discontinuity of advection},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {44--58},
year = {2024},
volume = {220},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a3/}
}
TY - JOUR AU - P. E. Bulatov AU - Han Cheng AU - Yuxuan Wei AU - V. T. Volkov AU - N. T. Levashova TI - Boundary control problem for the reaction–advection–diffusion equation with a modulus discontinuity of advection JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 44 EP - 58 VL - 220 IS - 1 UR - http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a3/ LA - ru ID - TMF_2024_220_1_a3 ER -
%0 Journal Article %A P. E. Bulatov %A Han Cheng %A Yuxuan Wei %A V. T. Volkov %A N. T. Levashova %T Boundary control problem for the reaction–advection–diffusion equation with a modulus discontinuity of advection %J Teoretičeskaâ i matematičeskaâ fizika %D 2024 %P 44-58 %V 220 %N 1 %U http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a3/ %G ru %F TMF_2024_220_1_a3
P. E. Bulatov; Han Cheng; Yuxuan Wei; V. T. Volkov; N. T. Levashova. Boundary control problem for the reaction–advection–diffusion equation with a modulus discontinuity of advection. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 44-58. http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a3/
[1] O. V. Rudenko, “Nelineinaya dinamika kvadratichno kubichnykh sistem”, UFN, 183:7 (2013), 719–726 | DOI | DOI
[2] O. V. Rudenko, “Neodnorodnoe uravnenie Byurgersa s modulnoi nelineinostyu: vozbuzhdenie i evolyutsiya intensivnykh voln”, Dokl. RAN, 474:6 (2017), 671–674 | DOI | DOI | MR
[3] S. A. Ambartsumyan, Raznomodulnaya teoriya uprugosti, Nauka, M., 1982 | MR | Zbl
[4] N. Nefedov, “The existence and asymptotic stability of periodic solutions with an interior layer of burgers type equations with modular advection”, Math. Model. Nat. Phenom, 14:4 (2019), 401, 14 pp. | DOI | MR
[5] N. N. Nefedov, E. I. Nikulin, A. O. Orlov, “O periodicheskom vnutrennem sloe v zadache reaktsiya-diffuziya s istochnikom modulno-kubichnogo tipa”, Zhurn. vychisl. matem. i matem. fiz., 60:9 (2020), 1513–1532 | DOI | DOI
[6] B. V. Tischenko, “Cuschestvovanie reshenii sistemy dvukh obyknovennykh differentsialnykh uravnenii s nelineinostyu modulno-kubicheskogo tipa”, TMF, 215:2 (2023), 318–335 | DOI | DOI | MR
[7] D. V. Lukyanenko, V. B. Grigorev, V. T. Volkov, M. A. Shishlenin, “Solving of the coefficient inverse problem for a nonlinear singularly perturbed two-dimensional reaction-diffusion equation with the location of moving front data”, Comput. Math. Appl., 77:5 (2019), 1245–1254 | DOI | MR
[8] D. V. Lukyanenko, A. A. Borzunov, M. A. Shishlenin, “Solving coefficient inverse problems for nonlinear singularly perturbed equations of the reaction-diffusion-advection type with data on the position of a reaction front”, Commun. Nonlinear Sci. Numer. Simul., 99 (2021), 105824, 10 pp. | DOI | MR
[9] N. Levashova, A. Gorbachev, R. Argun, D. Lukyanenko, “The problem of the non-uniqueness of the solution to the inverse problem of recovering the symmetric states of a bistable medium with data on the position of an autowave front”, Symmetry, 13:5 (2021), 860, 15 pp. | DOI
[10] V. T. Volkov, N. N. Nefedov, “Asimptoticheskoe reshenie koeffitsientnykh obratnykh zadach dlya uravnenii tipa Byurgersa”, Zhurn. vychisl. matem. i matem. fiz., 60:6 (2020), 975–984 | DOI | DOI
[11] V. T. Volkov, N. N. Nefedov, “Asimptoticheskoe reshenie zadachi granichnogo upravleniya dlya uravneniya tipa Byurgersa s modulnoi advektsiei i lineinym usileniem”, Zhurn. vychisl. matem. i matem. fiz., 62:11 (2022), 1851–1860 | DOI | DOI
[12] N. N. Nefedov, V. T. Volkov, “Asymptotic solution of the inverse problem for restoring the modular type source in Burgers' equation with modular advection”, J. Inverse Ill-Posed Probl., 28:5 (2020), 633–639 | DOI | MR
[13] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR | MR
[14] N. N. Nefedov, “Razvitie metodov asimptoticheskogo analiza perekhodnykh sloev v uravneniyakh reaktsii-diffuzii-advektsii: teoriya i primenenie”, Zhurn. vychisl. matem. i matem. fiz., 61:12 (2021), 2074–2094 | DOI | DOI
[15] V. N. Pavlenko, M. S. Fedyashev, “Periodicheskie resheniya parabolicheskikh uravnenii s razryvnymi nelineinostyami”, Vestnik ChelGU, 2011, no. 14, 94–101
[16] P. E. Bulatov, “Numerical integration of one-dimensioned reaction-diffusion-advection problem using adaptive mesh”, 4th International Conference on Integrable Systems $\$ Nonlinear Dynamics (ISND–2023), Abstracts (P. G. Demidov Yaroslavl State University, Yaroslavl, September 25–29, 2023), Filigran, Yaroslavl, 2023, 38–39
[17] L. M. Degtyarev, T. S. Ivanova, “Metod adaptivnykh setok v odnomernykh nestatsionarnykh zadachakh konvektsii-diffuzii”, Differents. uravneniya, 29:7 (1993), 1179–1192 | MR
[18] N. N. Kalitkin, P. V. Koryakin, Chislennye metody. Kniga 2: Metody matematicheskoi fiziki, Izdatelskii tsentr “Akademiya”, M., 2013
[19] N. N. Kalitkin, E. A. Alshina, Chislennye metody. Kniga 1: Chislennyi analiz, Izdatelskii tsentr “Akademiya”, M., 2013
[20] A. A. Samarskii, E. S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | Zbl | Zbl