Boundary control problem for the reaction–advection–diffusion equation with a modulus discontinuity of advection
Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 44-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a periodic problem for a singularly perturbed parabolic reaction–diffusion–advection equation of the Burgers type with the modulus advection; it has a solution in the form of a moving front. We formulate conditions for the existence of such a solution and construct its asymptotic approximation. We pose a control problem where the required front propagation law is implemented by a specially chosen boundary condition. We construct an asymptotic solution of the boundary control problem. Using the asymptotic method of differential inequalities, we estimate the accuracy of the solution of the control problem. We propose an original numerical algorithm for solving singularly perturbed problems involving the modulus advection.
Keywords: Burgers equation, boundary control, asymptotic methods, small parameter, modulus nonlinearity, adaptive meshes, difference approximation.
@article{TMF_2024_220_1_a3,
     author = {P. E. Bulatov and Han Cheng and Yuxuan Wei and V. T. Volkov and N. T. Levashova},
     title = {Boundary control problem for the~reaction{\textendash}advection{\textendash}diffusion equation with a~modulus discontinuity of advection},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {44--58},
     year = {2024},
     volume = {220},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a3/}
}
TY  - JOUR
AU  - P. E. Bulatov
AU  - Han Cheng
AU  - Yuxuan Wei
AU  - V. T. Volkov
AU  - N. T. Levashova
TI  - Boundary control problem for the reaction–advection–diffusion equation with a modulus discontinuity of advection
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 44
EP  - 58
VL  - 220
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a3/
LA  - ru
ID  - TMF_2024_220_1_a3
ER  - 
%0 Journal Article
%A P. E. Bulatov
%A Han Cheng
%A Yuxuan Wei
%A V. T. Volkov
%A N. T. Levashova
%T Boundary control problem for the reaction–advection–diffusion equation with a modulus discontinuity of advection
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 44-58
%V 220
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a3/
%G ru
%F TMF_2024_220_1_a3
P. E. Bulatov; Han Cheng; Yuxuan Wei; V. T. Volkov; N. T. Levashova. Boundary control problem for the reaction–advection–diffusion equation with a modulus discontinuity of advection. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 44-58. http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a3/

[1] O. V. Rudenko, “Nelineinaya dinamika kvadratichno kubichnykh sistem”, UFN, 183:7 (2013), 719–726 | DOI | DOI

[2] O. V. Rudenko, “Neodnorodnoe uravnenie Byurgersa s modulnoi nelineinostyu: vozbuzhdenie i evolyutsiya intensivnykh voln”, Dokl. RAN, 474:6 (2017), 671–674 | DOI | DOI | MR

[3] S. A. Ambartsumyan, Raznomodulnaya teoriya uprugosti, Nauka, M., 1982 | MR | Zbl

[4] N. Nefedov, “The existence and asymptotic stability of periodic solutions with an interior layer of burgers type equations with modular advection”, Math. Model. Nat. Phenom, 14:4 (2019), 401, 14 pp. | DOI | MR

[5] N. N. Nefedov, E. I. Nikulin, A. O. Orlov, “O periodicheskom vnutrennem sloe v zadache reaktsiya-diffuziya s istochnikom modulno-kubichnogo tipa”, Zhurn. vychisl. matem. i matem. fiz., 60:9 (2020), 1513–1532 | DOI | DOI

[6] B. V. Tischenko, “Cuschestvovanie reshenii sistemy dvukh obyknovennykh differentsialnykh uravnenii s nelineinostyu modulno-kubicheskogo tipa”, TMF, 215:2 (2023), 318–335 | DOI | DOI | MR

[7] D. V. Lukyanenko, V. B. Grigorev, V. T. Volkov, M. A. Shishlenin, “Solving of the coefficient inverse problem for a nonlinear singularly perturbed two-dimensional reaction-diffusion equation with the location of moving front data”, Comput. Math. Appl., 77:5 (2019), 1245–1254 | DOI | MR

[8] D. V. Lukyanenko, A. A. Borzunov, M. A. Shishlenin, “Solving coefficient inverse problems for nonlinear singularly perturbed equations of the reaction-diffusion-advection type with data on the position of a reaction front”, Commun. Nonlinear Sci. Numer. Simul., 99 (2021), 105824, 10 pp. | DOI | MR

[9] N. Levashova, A. Gorbachev, R. Argun, D. Lukyanenko, “The problem of the non-uniqueness of the solution to the inverse problem of recovering the symmetric states of a bistable medium with data on the position of an autowave front”, Symmetry, 13:5 (2021), 860, 15 pp. | DOI

[10] V. T. Volkov, N. N. Nefedov, “Asimptoticheskoe reshenie koeffitsientnykh obratnykh zadach dlya uravnenii tipa Byurgersa”, Zhurn. vychisl. matem. i matem. fiz., 60:6 (2020), 975–984 | DOI | DOI

[11] V. T. Volkov, N. N. Nefedov, “Asimptoticheskoe reshenie zadachi granichnogo upravleniya dlya uravneniya tipa Byurgersa s modulnoi advektsiei i lineinym usileniem”, Zhurn. vychisl. matem. i matem. fiz., 62:11 (2022), 1851–1860 | DOI | DOI

[12] N. N. Nefedov, V. T. Volkov, “Asymptotic solution of the inverse problem for restoring the modular type source in Burgers' equation with modular advection”, J. Inverse Ill-Posed Probl., 28:5 (2020), 633–639 | DOI | MR

[13] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Vysshaya shkola, M., 1990 | MR | MR

[14] N. N. Nefedov, “Razvitie metodov asimptoticheskogo analiza perekhodnykh sloev v uravneniyakh reaktsii-diffuzii-advektsii: teoriya i primenenie”, Zhurn. vychisl. matem. i matem. fiz., 61:12 (2021), 2074–2094 | DOI | DOI

[15] V. N. Pavlenko, M. S. Fedyashev, “Periodicheskie resheniya parabolicheskikh uravnenii s razryvnymi nelineinostyami”, Vestnik ChelGU, 2011, no. 14, 94–101

[16] P. E. Bulatov, “Numerical integration of one-dimensioned reaction-diffusion-advection problem using adaptive mesh”, 4th International Conference on Integrable Systems $\$ Nonlinear Dynamics (ISND–2023), Abstracts (P. G. Demidov Yaroslavl State University, Yaroslavl, September 25–29, 2023), Filigran, Yaroslavl, 2023, 38–39

[17] L. M. Degtyarev, T. S. Ivanova, “Metod adaptivnykh setok v odnomernykh nestatsionarnykh zadachakh konvektsii-diffuzii”, Differents. uravneniya, 29:7 (1993), 1179–1192 | MR

[18] N. N. Kalitkin, P. V. Koryakin, Chislennye metody. Kniga 2: Metody matematicheskoi fiziki, Izdatelskii tsentr “Akademiya”, M., 2013

[19] N. N. Kalitkin, E. A. Alshina, Chislennye metody. Kniga 1: Chislennyi analiz, Izdatelskii tsentr “Akademiya”, M., 2013

[20] A. A. Samarskii, E. S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | Zbl | Zbl