Finite-gap solutions of the real modified Korteweg–de Vries equation
Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 191-209 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider methods for constructing finite-gap solutions of the real classical modified Korteweg–de Vries equation and elliptic finite-gap potentials of the Dirac operator. The Miura transformation is used in both methods to relate solutions of the Korteweg–de Vries and modified Korteweg–de Vries equations. We present examples.
Keywords: KdV equation, mKdV equation, spectral curve, finite-gap solution.
Mots-clés : Miura transformation
@article{TMF_2024_220_1_a11,
     author = {A. O. Smirnov and I. V. Anisimov},
     title = {Finite-gap solutions of the~real modified {Korteweg{\textendash}de~Vries} equation},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {191--209},
     year = {2024},
     volume = {220},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a11/}
}
TY  - JOUR
AU  - A. O. Smirnov
AU  - I. V. Anisimov
TI  - Finite-gap solutions of the real modified Korteweg–de Vries equation
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 191
EP  - 209
VL  - 220
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a11/
LA  - ru
ID  - TMF_2024_220_1_a11
ER  - 
%0 Journal Article
%A A. O. Smirnov
%A I. V. Anisimov
%T Finite-gap solutions of the real modified Korteweg–de Vries equation
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 191-209
%V 220
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a11/
%G ru
%F TMF_2024_220_1_a11
A. O. Smirnov; I. V. Anisimov. Finite-gap solutions of the real modified Korteweg–de Vries equation. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 191-209. http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a11/

[1] B. A. Dubrovin, “Matrichnye konechnozonnye operatory”, Itogi nauki i tekhn. Ser. Sovrem. probl. matem., 23, VINITI, M., 1983, 33–78 | DOI | MR | Zbl

[2] A. O. Smirnov, A. A. Caplieva, “Vector form of Kundu–Eckhaus equation and its simplest solutions”, Ufimsk. matem. zhurn., 15:3 (2023), 151–166 | DOI | MR

[3] R. M. Miura, C. S. Gardner, M. D. Kruskal, “Korteweg–de Vries equation and generalizations. II. Existence of conservation laws and constants of motion”, J. Math. Phys., 9 (1968), 1204–1209 | DOI | MR

[4] A. R. Its, V. P. Kotlyarov, “Ob odnom klasse reshenii nelineinogo uravneniya Shredingera”, Dokl. AN USSR. Ser. A, 11 (1976), 965–968 | MR | Zbl

[5] E. D. Belokolos, A. I. Bobenko, V. Z. Enol'skij, A. R. Its, V. B. Matveev, Algebro-Geometric Approach to Nonlinear Integrable Equations, Springer Series in Nonlinear Dynamics, Springer, Berlin, 1994 | Zbl

[6] A. O. Smirnov, “Ob odnom klasse ellipticheskikh potentsialov operatora Diraka”, Matem. sbornik, 188:1 (1997), 109–128 | DOI | DOI | MR | Zbl

[7] A. O. Smirnov, “Elliptic solitons and Heun's equation”, The Kowalevski Property, CRM Proceedings and Lecture Notes, 32, ed. V. B. Kuznetsov, AMS, Providence, RI, 2002, 287–305 | DOI | MR

[8] B. A. Dubrovin, S. P. Novikov, “Periodicheskaya zadacha dlya uravnenii Kortevega–de Friza i Shturma–Liuvillya. Ikh svyaz s algebraicheskoi geometriei”, Dokl. AN SSSR, 219:3 (1974), 531–534 | MR | Zbl

[9] A. R. Its, V. B. Matveev, “Operatory Shredingera s konechnozonnym spektrom i $N$-solitonnye resheniya uravneniya Kortevega–de Friza”, TMF, 23:1 (1975), 51–67 | DOI | MR

[10] A. R. Its, V. B. Matveev, “Ob operatorakh Khilla s konechnym chislom lakun”, Funkts. analiz i ego prilozh., 9:1 (1975), 69–70 | DOI | MR | Zbl

[11] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Nelineinye uravneniya tipa Kortevega–de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1(187), 55–136 | DOI | MR | Zbl

[12] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov. Metod obratnoi zadachi, Nauka, M., 1980 | MR | Zbl

[13] P. Appell, “Sur la transformation des équations différentielles linéaires”, C. R. Acad. Sci. Paris, 91 (1880), 211–214

[14] G. Darboux, “Sur une equation linéaire”, C. R. Acad. Sci. Paris, 94 (1882), 1645–1648

[15] V. B. Matveev, M. A. Salle, Darboux Transformations and Solitons, Springer Ser. Nonlinear Dynamics, Springer, Berlin, 1991 | MR

[16] de Sparre, “Sur l'equation $\frac{d^2 y}{dx^2 } + \Bigl[ 2\nu \frac{k^2 \operatorname{sn} x \operatorname{cn} x}{\operatorname{dn} x} + 2\nu _1 \frac{\operatorname{sn} x \operatorname{dn} x}{\operatorname{cn} x} - 2\nu _2 \frac{\operatorname{cn} x \operatorname{dn} x}{\operatorname{sn} x} \Bigr]\frac{dy}{dx}$ ${}= \Bigl[ \frac{I}{\operatorname{sn}^2 x}(n_3 - \nu _2 )(n_3 + \nu _2 + 1) + \frac{\operatorname{dn}^2 x}{\operatorname{cn}^2 x}(n_2 - \nu _1 )(n_2 + \nu _1 + 1)$ ${}+ \frac{k^2 \operatorname{cn}^2 x}{\operatorname{dn}^2 x}(n_1 - \nu )(n_1 + \nu + 1) $ ${}+ k^2 \operatorname{sn}^2 x(n + \nu + \nu _1 + \nu _2 )(n - \nu - \nu _1 - \nu _2 + 1)$ ${} + h \Bigr]y $: Équation ou $\nu$, $\nu_1$, $\nu_2$, désignent des nombres quelconques, $n$, $n_1$, $n_2$, $n_3$ des nombres entiers positifs ou négatifs, et $h$ une constante arbitraire. Premier mémoire”, Acta Math., 3 (1883), 105–140 ; “Deuxième mémoire”, 289–321 | DOI | MR

[17] A. O. Smirnov, “On the link between the Sparre equation and Darboux–Treibich–Verdier equation”, Lett. Math. Phys., 76:2–3 (2006), 283–295 | DOI | MR

[18] J.-L. Verdier, “New elliptic solitons”, Algebraic Analisys: Papers Dedicated to Professor Mikio Sato on the Occasion of his Sixtieth Birthday, v. 2, eds. M. Kashiwara, T. Kawai, Academic Press, Boston, MA, 1988, 901–910 | DOI | MR

[19] A. Treibich, “Tangential polynomials and elliptic solitons”, Duke Math. J., 59:3 (1989), 611–627 | DOI | MR

[20] A. Treibich, J.-L. Verdier, “Revêtements exceptionnels et sommes de 4 nombres triangulaires”, C. R. Acad. Sci. Paris Sér. I Math., 311:1 (1990), 51–54 | MR

[21] E. D. Belokolos, V. Z. Enolskii, “Izospektralnye deformatsii ellipticheskikh potentsialov”, UMN, 44:5 (1989), 155–156 | DOI | MR | Zbl

[22] A. O. Smirnov, “Ellipticheskie resheniya uravneniya Kortevega–de Friza”, Matem. zametki, 45:6 (1989), 66–73 | DOI | MR | Zbl

[23] E. D. Belokolos, V. Z. Enol'skii, “Reduction of theta functions and elliptic finite-gap potentials”, Acta Appl. Math., 36:1–2 (1994), 87–117 | DOI | MR

[24] A. O. Smirnov, “Finite-gap elliptic solutions of the KdV equation”, Acta Appl. Math., 36:1–2 (1994), 125–166 | DOI | MR

[25] F. Gesztesy, R. Weikard, “Treibich–Verdier potentials and the stationary (m)KdV hierarchy”, Math. Z., 219:3 (1995), 451–476 | DOI | MR

[26] K. Takemura, “The Heun equation and the Calogero–Moser–Sutherland system I: The Bethe ansatz method”, Commun. Math. Phys., 235:3 (2003), 467–494 | DOI | MR

[27] Yu. N. Sirota, A. O. Smirnov, “Uravnenie Goina i preobrazovanie Darbu”, Matem. zametki, 79:2 (2006), 267–277 | DOI | DOI | MR | Zbl

[28] A. Treibich, “Giperellipticheskie kasatelnye nakrytiya i konechno-zonnye potentsialy”, UMN, 56:6(342), 89–136 | DOI | DOI | MR | Zbl

[29] A. O. Smirnov, “Finite-gap solutions of the Fuchsian equations”, Lett. Math. Phys., 76:2–3 (2006), 297–316 | DOI | MR