Adiabatic perturbation theory for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions
Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 164-190 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a defocusing Manakov system (vector nonlinear Schrödinger (NLS) system) with nonvanishing boundary conditions and use the inverse scattering transform formalism. Integrable models provide a very useful proving ground for testing new analytic and numerical approaches to studying the vector NLS system. We develop a perturbation theory for the integrable vector NLS model. Evidently, small disturbance of the integrability condition can be considered a perturbation of the integrable model. Our formalism is based on the Riemann–Hilbert problem associated with the vector NLS model with nonvanishing boundary conditions. We use the RH and adiabatic perturbation theory to analyze the dynamics of dark–dark and dark–bright solitons in the presence of a perturbation with nonvanishing boundary conditions.
Keywords: inverse scattering transform, nonlinear waves, nonlinear Schrödinger systems.
Mots-clés : solitons
@article{TMF_2024_220_1_a10,
     author = {V. M. Rothos},
     title = {Adiabatic perturbation theory for the~vector nonlinear {Schr\"odinger} equation with nonvanishing boundary conditions},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {164--190},
     year = {2024},
     volume = {220},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a10/}
}
TY  - JOUR
AU  - V. M. Rothos
TI  - Adiabatic perturbation theory for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 164
EP  - 190
VL  - 220
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a10/
LA  - ru
ID  - TMF_2024_220_1_a10
ER  - 
%0 Journal Article
%A V. M. Rothos
%T Adiabatic perturbation theory for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 164-190
%V 220
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a10/
%G ru
%F TMF_2024_220_1_a10
V. M. Rothos. Adiabatic perturbation theory for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 164-190. http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a10/

[1] C. J. Pethick, H. Smith, Bose–Einstein Condensation in Dilute Gases, Cambridge Univ. Press, Cambridge, 2001 | DOI

[2] L. Pitaevskii, S. Stringari, Bose–Einstein Condensation, International Series of Monographs on Physics, 116, Oxford Univ. Press, Oxford, 2003 | MR

[3] P. G. Kevrekidis, D. J. Frantzeskakis, R. Carretero-González, Emergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment, Springer, Berlin, Heidelberg, 2008 | DOI

[4] R. Carretero-Gonzáles, D. J. Frantzeskakis, P. G. Kevrekidis, “Nonlinear waves in Bose–Einstein condensates: physical relevance and mathematical techniques”, Nonlinearity, 21:7 (2008), R139–R202 | DOI | MR

[5] F. Kh. Abdullaev, A. Gammal, A. M. Kamchatnov, L. Tomio, “Dynamics of bright matter wave solitons in a Bose–Einstein condensate”, Internat. J. Modern Phys. B, 19:22 (2005), 3415–3473 | DOI

[6] D. J. Frantzeskakis, “Dark solitons in atomic Bose–Einstein condensates: from theory to experiments”, J. Phys. A: Math. Theor., 43:21 (2010), 213001, 68 pp. | DOI | MR

[7] Th. Busch, J. R. Anglin, “Dark-bright solitons in inhomogeneous Bose–Einstein condensates”, Phys. Rev. Lett., 87:1 (2001), 010401, 4 pp. | DOI

[8] H. E. Nistazakis, D. J. Frantzeskakis, P. G. Kevrekidis, B. A. Malomed, R. Carretero-González, “Bright-dark soliton complexes in spinor Bose–Einstein condensates”, Phys. Rev. A, 77:3 (2008), 033612, 13 pp. | DOI

[9] Yu. S. Kivshar, G. P. Agraval, Opticheskie solitony. Ot volokonnykh svetovodov do fotonnykh kristallov, Fizmatlit, M., 2005

[10] M. J. Ablowitz, B. Prinari, A. D. Trubatch, Discrete and Continuous Nonlinear Schrödinger Systems, London Mathematical Society Lecture Note Series, 302, Cambridge Univ. Press, Cambridge, 2003 | DOI | MR

[11] A. Álvarez, J. Cuevas, F. R. Romero, P. G. Kevrekidis, “Dark-bright discrete solitons: A numerical study of existence, stability and dynamics”, Phys. D, 240:8 (2011), 767–778 | DOI

[12] K. J. H. Law, P. G. Kevrekidis, L. S. Tuckerman, “Stable vortex-bright-soliton structures in two-component Bose–Einstein condensates”, Phys. Rev. Lett., 105:16 (2010), 160405, 4 pp. ; Erratum 106:19, 199903, 1 pp. | DOI | DOI

[13] Z. Chen, M. Segev, T. H. Coskun, D. N. Christodoulides, Yu. S. Kivshar, V. V. Afanasjev, “Incoherently coupled dark-bright photorefractive solitons”, Optics Lett., 21:22 (1996), 1821–1823 | DOI

[14] E. A. Ostrovskaya, Yu. S. Kivshar, Z. Chen, M. Segev, “Interaction between vector solitons and solitonic gluons”, Optics Lett., 24:5 (1999), 327–329 | DOI

[15] C. Becker, S. Stellmer, P. Soltan-Panahi et al., “Oscillations and interactions of dark and dark-bright solitons in Bose–Einstein condensates”, Nature Phys., 4:6 (2008), 496–501 | DOI

[16] C. Hamner, J. J. Chang, P. Engels, M. A. Hoefer, “Generation of dark-bright soliton trains in superfluid-superfluid counterflow”, Phys. Rev. Lett., 106:6 (2011), 065302, 4 pp. | DOI

[17] S. Middelkamp, J. J. Chang, C. Hamner et al., “Dynamics of dark-bright solitons in cigar-shaped Bose–Einstein condensates”, Phys. Lett. A, 375:3 (2011), 642–646 | DOI

[18] H. G. Winful, “Self-induced polarization changes in birefringent optical fibers”, Appl. Phys. Lett., 47:3 (1985), 213–215 | DOI

[19] C.-J. Chen, P. K. A. Wai, C. R. Menuyk, “Soliton switch using birefringent optical fibers”, Optics Lett., 15 (1990), 477–479 | DOI

[20] M. V. Tratnik, J. E. Sipe, “Bound solitary waves in a birefringent optical fiber”, Phys. Rev. A, 38:4 (1988), 2011–2017 | DOI

[21] D. N. Christodoulides, R. J. Joseph, “Vector solitons in birefringent nonlinear dispersive media”, Optics Lett., 13:1 (1988), 53–55 | DOI

[22] C. R. Menyuk, “Pulse propagation in an elliptically birefringent Kerr medium”, IEEE J. Quantum Electr., 25:12 (1988), 2674–2682 | DOI

[23] K. E. Strecker, G. B. Partridge, A. G. Truscott, R. G. Hulet, “Formation and propagation of matter-wave soliton trains”, Nature, 417:6885 (2002), 150–153 | DOI

[24] L. Khaykovich, F. Schreck, G. Ferrari et al., “Formation of a matter-wave bright soliton”, Science, 296:5571 (2002), 1290–1293 | DOI

[25] S. Burger, K. Bongs, S. Dettmer et al., “Dark solitons in Bose–Einstein condensates”, Phys. Rev. Lett., 83:25 (1999), 5198–5201 | DOI

[26] J. Denschlag, J. E. Simsarian, D. L. Feder et al., “Generating solitons by phase engineering of a Bose–Einstein condensate”, Science, 287:5450 (2000), 97–101 | DOI

[27] P. Meystre, Atom Optics, Springer Series on Atomic, Optical, and Plasma Physics, 33, Springer, New York, 2001 | DOI

[28] V. A. Brazhnyi, V. V. Konotop, “Theory of nonlinear matter waves in optical lattices”, Modern Phys. Lett. B, 18:14 (2004), 627–651 | DOI

[29] L. D. Carr, J. Brand, “Multidimensional Solitons: Theory”, Emergent Nonlinear Phenomena in Bose–Einstein Condensates: Theory and Experiment, Springer Series in Atomic, Optical and Plasma Physics, 45, eds. P. G. Kevrekidis, D. J. Frantzeskakis, R. Carretero-González, Springer, Berlin, Heidelberg, 2008, 133–155 | DOI

[30] M. J. Ablowitz, S. D. Nixon, T. P. Horikis, D. J. Frantzeskakis, “Perturbations of dark solitons”, Proc. R. Soc. London Ser. A, 467:2133 (2011), 2597–2621 | DOI | MR

[31] E. V. Doktorov, N. P. Matsuka, V. M. Rothos, “Perturbation-induced radiation by the Ablowitz–Ladik soliton”, Phys. Rev. E, 68:8 (2003), 066610, 14 pp. | DOI | MR

[32] E. V. Doktorov, “Dynamics of subpicosecond dispersion-managed soliton in a fibre: a perturbative analysis”, J. Modern Opt., 53:18 (2006), 2701–2723 | DOI

[33] Yu. S. Kivshar, “Perturbation theory based on the Riemann problem for the Landau–Lifshitz equation”, Phys. D, 40:1 (1989), 11–32 | DOI | MR

[34] E. V. Doktorov, R. A. Vlasov, “Optical solitons in media with combined resonant and non-resonant (cubic) nonlinearities in the presence of perturbations”, J. Modern Opt., 38:1 (1991), 31–45 | DOI

[35] V. S. Shchesnovich, “The soliton perturbation theory based on the Riemann–Hilbert spectral problem”, Chaos Solitons Fractals, 5:11 (1995), 2121–2133 | DOI | MR

[36] V. S. Shchesnovich, E. V. Doktorov, “Perturbation theory for the modified nonlinear Schrödinger solitons”, Phys. D, 129:1–2 (1999), 115–129 | DOI | MR

[37] V. S. Shchesnovich, “Perturbation theory for nearly integrable multicomponent nonlinear PDEs”, J. Math. Phys., 43:3 (2002), 1460–1486 | DOI | MR

[38] B. Prinari, M. J. Ablowitz, G. Biondini, “Inverse scattering transform for the vector nonlinear Schrödinger equation with nonvanishing boundary conditions”, J. Math. Phys., 47:6 (2006), 063508, 33 pp. | DOI | MR

[39] S. V. Manakov, “K teorii dvumernoi statsionarnoi samofokusirovki elektromagnitnykh voln”, ZhETF, 65:2 (1973), 505–516

[40] D. J. Kaup, “The three-wave interaction – a nondispersive phenomenon”, Stud. Appl. Math., 55:1 (1976), 9–44 | DOI | MR

[41] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR | Zbl

[42] V. Achilleos, P. G. Kevrekidis, V. M. Rothos, D. J. Frantzeskakis, “Statics and dynamics of atomic dark-bright solitons in the presence of impurities”, Phys. Rev. A, 84:5 (2011), 053626, 10 pp. | DOI