Singularities of 3D vector fields preserving the Martinet form
Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the local structure of vector fields on $\mathbb{R}^3$ that preserve the Martinet $1$-form $\alpha=(1+x)dy\pm z\,dz$. We classify their singularities up to diffeomorphisms that preserve the form $\alpha$, as well as their transverse unfoldings. We are thus able to provide a fairly complete list of the bifurcations such vector fields undergo.
Mots-clés : Martinet $1$-form, bifurcations.
Keywords: singularities, vector fields
@article{TMF_2024_220_1_a0,
     author = {S. Anastassiou},
     title = {Singularities of {3D} vector fields preserving {the~Martinet} form},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {3--12},
     year = {2024},
     volume = {220},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a0/}
}
TY  - JOUR
AU  - S. Anastassiou
TI  - Singularities of 3D vector fields preserving the Martinet form
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 3
EP  - 12
VL  - 220
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a0/
LA  - ru
ID  - TMF_2024_220_1_a0
ER  - 
%0 Journal Article
%A S. Anastassiou
%T Singularities of 3D vector fields preserving the Martinet form
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 3-12
%V 220
%N 1
%U http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a0/
%G ru
%F TMF_2024_220_1_a0
S. Anastassiou. Singularities of 3D vector fields preserving the Martinet form. Teoretičeskaâ i matematičeskaâ fizika, Tome 220 (2024) no. 1, pp. 3-12. http://geodesic.mathdoc.fr/item/TMF_2024_220_1_a0/

[1] J. Martinet, “Sur les singularités des formes différentielles”, Ann. Inst. Fourier (Grenoble), 20:1 (1970), 95–178 | DOI | MR

[2] M. Zhitomirskii, Typical Singularities of Differential $1$-forms and Pfaffian Equations, Translations of Mathematical Monographs, 113, AMS, Providence, RI, 1992 | DOI | MR

[3] V. V. Lychagin, “Lokalnaya klassifikatsiya nelineinykh differentsialnykh uravnenii v chastnykh proizvodnykh pervogo poryadka”, UMN, 30:1(181) (1975), 101–171 | DOI | MR | Zbl

[4] V. V. Lychagin, “O dostatochnykh orbitakh gruppy kontaktnykh diffeomorfizmov”, Matem. sb., 104(146):2(10) (1977), 248–270 | DOI | MR | Zbl

[5] Sh.-N. Chow, C. Z. Li, D. Wang, Normal Forms and Bifurcation of Planar Vector Fields, Cambridge Univ. Press, Cambridge, 1994 | DOI | MR

[6] A. Banyaga, R. de la Llave, C. E. Wayne, “Cohomology equations near hyperbolic points and geometric versions of Sternberg linearization theorem”, J. Geom. Anal., 6:4 (1996), 613–649 | DOI | MR

[7] D. R. Dullin, J. D. Meiss, “Nilpotent normal form for divergence-free vector fields and volume-preserving maps”, Phys. D, 237:2 (2008), 156–166 | DOI | MR

[8] Th. Bröcker, Diffential Germs and Catastrophes, London Mathematical Society Lecture Note Series, 17, Cambridge Univ. Press, Cambridge, 1975 | DOI | MR

[9] K. Kourliouros, “Singularities of functions on the Martinet plane, constrained Hamiltonian systems and singular Lagrangians”, J. Dyn. Control Syst., 21:3 (2015), 401–422 | DOI | MR

[10] K. Kourliouros, “Local diffeomorphisms in symplectic space and Hamiltonian systems with constraints”, J. Geom. Phys., 138 (2019), 206–214 | DOI | MR

[11] S. Anastassiou, “Dynamical systems on the Liouville plane and the related strictly contact systems”, Regul. Chaotic Dyn., 21:7–8 (2016), 862–873 | DOI | MR

[12] G. Belitskii, “$C^{\infty}$ normal forms of local vector fields”, Acta Appl. Math., 70:1–3 (2002), 23–41 | DOI | MR

[13] V. P. Kostov, “Versalnye deformatsii differentsialnykh form veschestvennoi stepeni na veschestvennoi pryamoi”, Izv. AN SSSR. Ser. matem., 54:6 (1990), 1168–1180 | DOI | MR | Zbl

[14] M. Klimeš, C. Rousseau, “On the universal unfoldings of vector fields of the line: a proof of Kostov's theorem”, Qual. Theory Dyn. Sys., 19:3 (2020), 80, 13 pp. | DOI | MR