Monopoles, spectra of overlap fermions, and eta-prime meson in
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 3, pp. 562-596 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The effects of external magnetic fields on monopoles, spectra of the overlap Dirac operator, instantons, and the mass of the eta-prime meson are examined by conducting lattice QCD simulations. The uniform external magnetic field is applied to gauge field configurations with $N_f=2+1$ flavor quarks. The bare quark masses are tuned in order to obtain the physical values of the pion mass and of the $m_s/m_{u,d}$ ratio. Standard configurations and configurations with an applied external magnetic field are generated in the color confinement and deconfinement phases. The intensity of the external magnetic field varies from $e|B|=0.57\,\mathrm{GeV}^2$ to $e|B|=1.14\,\mathrm{GeV}^2$. To examine the influence of the external magnetic field on monopoles, we first calculate the monopole density, measure the lengths of the monopole loops, and compare them with the absolute value of the Polyakov loops. Next, using the generated configurations, we compute the eigenvalues and eigenvectors of the overlap Dirac operator, which preserves exact chiral symmetry. To investigate how external magnetic fields affect the spectra of the overlap Dirac operator, we compute spectral densities, compare fluctuations of the eigenvalues of the overlap Dirac operator with the predictions of random matrix theory, and estimate the number of instantons and anti-instantons from the topological charges. In addition, we analyze smearing effects on these observables and chiral symmetry breaking. Finally, we calculate the decay constant of the pseudoscalar meson, the chiral condensate, and the square mass of the eta-prime meson using the eigenvalues and eigenvectors. We then extrapolate the numerical results in the chiral limit and demonstrate the effects of external magnetic fields on the extrapolation results. This article presents preliminary results.
Keywords: topology, chiral symmetry breaking, heavy-ion collisions.
@article{TMF_2024_219_3_a9,
     author = {M. Hasegawa},
     title = {Monopoles, spectra of overlap fermions, and eta-prime meson in},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {562--596},
     year = {2024},
     volume = {219},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a9/}
}
TY  - JOUR
AU  - M. Hasegawa
TI  - Monopoles, spectra of overlap fermions, and eta-prime meson in
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 562
EP  - 596
VL  - 219
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a9/
LA  - ru
ID  - TMF_2024_219_3_a9
ER  - 
%0 Journal Article
%A M. Hasegawa
%T Monopoles, spectra of overlap fermions, and eta-prime meson in
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 562-596
%V 219
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a9/
%G ru
%F TMF_2024_219_3_a9
M. Hasegawa. Monopoles, spectra of overlap fermions, and eta-prime meson in. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 3, pp. 562-596. http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a9/

[1] G. 't Hooft, “Gauge fields with unified weak, electromagnetic, and strong interactions”, High Energy Physics, Proceedings of the EPS International Conference (Palermo, Sicily, Italy, 23–28 June, 1975), v. 2, ed. A. Zichichi, Editrice Compositori, Bologna, 1976, 1225–1249

[2] S. Mandelstam, “II. Vortices and quark confinement in non-Abelian gauge theories”, Phys. Rep., 23:3 (1976), 245–249 | DOI

[3] T. Schäfer, E. V. Shuryak, “Instantons in QCD”, Rev. Mod. Phys., 70:2 (1998), 323–425 | DOI | MR

[4] D. I. Diakonov, “Instantons at work”, Progr. Part. Nucl. Phys., 51:1 (2003), 173–222 | DOI

[5] M. Hasegawa, “Monopole and instanton effects in QCD”, JHEP, 09 (2020), 113, 59 pp., arXiv: 1807.04808 | DOI

[6] M. Hasegawa, “Color confinement, chiral symmetry breaking, and catalytic effect induced by monopole and instanton creations”, Eur. Phys. J. C, 82:11 (2022), 1040, 38 pp. | DOI

[7] L. Giusti, G. C. Rossi, M. Testa, G. Veneziano, “The $U_A(1)$ problem on the lattice with Ginsparg–Wilson fermions”, Nucl. Phys. B, 628:1–2 (2002), 234–252 | DOI

[8] T. DeGrand, U. M. Heller, “Witten–Veneziano relation, quenched QCD, and overlap fermions”, Phys. Rev. D, 65:11 (2002), 114501, 9 pp. | DOI

[9] M. Hasegawa, “Instanton effects on chiral symmetry breaking and hadron spectroscopy”, PoS (LATTICE2021), 396 (2022), 397, 10 pp. | DOI

[10] T. Vachaspati, “Magnetic fields from cosmological phase transitions”, Phys. Lett. B, 265:3–4 (1991), 258–261 | DOI

[11] D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Yee, “Strongly interacting matter in magnetic fields: A guide to this volume”, Strongly Interacting Matter in Magnetic Fields, Lecture Notes in Physics, 871, ed. D. Kharzeev, Springer, Berlin, Heidelberg, 2013, 1–11, arXiv: 1211.6245 | DOI

[12] V. Kekelidze, A. Kovalenko, R. Lednicky et al. [NICA Collab.], “Status of the NICA project at JINR”, Nucl. Part. Phys. Proc., 273–275 (2016), 170–174 | DOI

[13] G. S. Bali, F. Bruckmann, G. Endrődi, Z. Fodor, S. D. Katz, A. Schäfer, “QCD quark condensate in external magnetic fields”, Phys. Rev. D, 86:7 (2012), 071502(R), 6 pp. | DOI

[14] G. S. Bali, F. Bruckmann, G. Endrődi, Z. Fodor, S. D. Katz, S. Krieg, A. Schäfer, K. K. Szabó, “The QCD phase diagram for external magnetic fields”, JHEP, 2012:2 (2012), 044, 25 pp. | DOI

[15] M. D'Elia, S. Mukherjee, F. Sanfilippo, “QCD phase transition in a strong magnetic background”, Phys. Rev. D, 82:5 (2010), 051501, 5 pp. | DOI

[16] M. D'Elia, F. Negro, “Chiral properties of strong interactions in a magnetic background”, Phys. Rev. D, 83:11 (2011), 114028, 11 pp. | DOI

[17] P. H. Ginsparg, K. G. Wilson, “A remnant of chiral symmetry on the lattice”, Phys. Rev. D, 25:10 (1982), 2649–2657 | DOI

[18] H. Neuberger, “Exactly massless quarks on the lattice”, Phys. Lett. B, 417:1–2 (1998), 141–144 | DOI | MR

[19] M. Lüscher, “Exact chiral symmetry on the lattice and the Ginsparg–Wilson relation”, Phys. Lett. B, 428:3–4 (1998), 342–345 | DOI

[20] S. Chandrasekharan, “Lattice QCD with Ginsparg–Wilson fermions”, Phys. Rev. D, 60:7 (1999), 074503, 6 pp. | DOI

[21] A. Di Giacomo, M. Hasegawa, “Monopoles in maximal Abelian gauge, number of zero modes, and instantons”, Cybermedia HPC J., 5 (2015), 21–26 (in Japanese)

[22] F. J. Dyson, M. L. Mehta, “Statistical theory of the energy levels of complex systems. IV”, J. Math. Phys., 4:5 (1963), 701–712 | DOI | MR

[23] T. Guhr, A. Müeller-Groeling, H. A. Weidenmüller, “Random-matrix theories in quantum physics: common concepts”, Phys. Rep., 299:4–6 (1998), 189–425 | DOI | MR

[24] C. Morningstar, M. Peardon, “Analytic smearing of $\mathrm{SU}(3)$ link variables in lattice QCD”, Phys. Rev. D, 69:5 (2004), 054501, 9 pp. | DOI

[25] C. R. Allton, C. T. Sachrajda, R. M. Baxter et al. [UKQCD Collab.], “Gauge-invariant smearing and matrix correlators using Wilson fermions at $\beta=6.2$”, Phys. Rev. D, 47:11 (1993), 5128–5137 | DOI

[26] Y. Aoki, T. Blum, N. Christ et al., “Lattice QCD with two dynamical flavors of domain wall fermions”, Phys. Rev. D, 72:11 (2005), 114505, 33 pp. | DOI

[27] C. Alexandrou, A. Athenodorou, K. Cichy et al., “Comparison of topological charge definitions in lattice QCD”, Eur. Phys. J. C, 80 (2020), 424, 30 pp. | DOI

[28] M. Teper, More methods for calculating the topological charge (density) of $SU(N)$ lattice gauge fields in $3+1$ dimensions, arXiv: 2202.02528

[29] K. Hashimoto, T. Izubuchi, “$\eta'$ Meson from two flavor dynamical domain wall fermions”, Progr. Theor. Phys., 119:4 (2008), 599–641 | DOI

[30] M. Hasegawa, “Data tables for ‘Monopoles, spectra of overlap fermions, and eta-prime meson in external magnetic fields’ ”, Figshare, Journal contribution posted on 2022-12-06, 14 pp. | DOI

[31] C. Bonati, M. M. D'Elia, M. Mariti, F. Negro, F. Sanfilippo, “Magnetic susceptibility and equation of state of $N_f=2+1$ QCD with physical quark masses”, Phys. Rev. D, 89:5 (2014), 054506, 10 pp. | DOI

[32] C. Bonati, M. M. D'Elia, M. Mariti et al., “Magnetic field effects on the static quark potential at zero and finite temperature”, Phys. Rev. D, 94:9 (2016), 094007, 14 pp. | DOI

[33] M. D'Elia, “Lattice QCD simulations in external background fields”, Strongly Interacting Matter in Magnetic Fields, Lecture Notes in Physics, 871, eds. D. Kharzeev, K. Landsteiner, A. Schmitt, H.-U. Yee, Springer, Berlin, Heidelberg, 2013, 181–208 | DOI

[34] S. Borsányi, G. Endrődi, Z. Fodor et al., “The QCD equation of state with dynamical quarks”, JHEP, 2010:11 (2010), 077, 33 pp. | DOI

[35] Y. Aoki, S. Borsányi, S. Dürr et al., “The QCD transition temperature: results with physical masses in the continuum limit II”, JHEP, 2009:6 (2009), 088, 17 pp. | DOI

[36] M. Albanese, F. Constantini, G. Fiorentini et al. [APE Collab.], “Glueball masses and string tension in lattice QCD”, Phys. Lett. B, 192:1–2 (1987), 163–169 | DOI

[37] F. Brandstaeter, G. Schierholz, U.-J. Wiese, “Color confinement, abelian dominance and the dynamics of magnetic monopoles in SU(3) gauge theory”, Phys. Lett. B, 272:3–4 (1991), 319–325 | DOI

[38] V. G. Bornyakov, H. Ichie, Y. Koma et al. [DIK Collab.], “Dynamics of monopoles and flux tubes in two-flavor dynamical QCD”, Phys. Rev. D, 70:7 (2004), 074511, 15 pp. | DOI

[39] V. N. Gribov, “Quantization of non-Abelian gauge theories”, Nucl. Phys. B, 139:1 (1978), 1–19 | DOI

[40] G. S. Bali, V. Bornyakov, M. Müller-Preussker, F. Pahl, “New algorithm for gauge fixing in SU(2) lattice gauge theory”, Nucl. Phys. B. Proc. Suppl., 42:1–3 (1995), 852–854 | DOI

[41] A. S. Kronfeld, G. Schierholz, U.-J. Wiese, “Topology and dynamics of the confinement mechanism”, Nucl. Phys. B, 293 (1987), 461–478 | DOI

[42] M. I. Polikarpov, K. Yee, “Properties of the abelian projection fields in SU(N) lattice gluodynamics”, Phys. Lett. B, 316:2–3 (1993), 333–338 | DOI

[43] T. A. DeGrand, D. Toussaint, “Topological excitations and Monte Carlo simulation of Abelian gauge theory”, Phys. Rev. D, 22:10 (1980), 2478–2489 | DOI

[44] A. Bode, Th. Lippert, K. Schilling, “Monopole clusters and critical dynamics in four-dimensional U(1)”, Nucl. Phys. B. Proc. Suppl., 34 (1994), 549–551 | DOI

[45] S. Kitahara, Y. Matsubara, T. Suzuki, “Deconfinement transition and monopoles in $T \neq 0$ SU(2) QCD”, Prog. Theor. Phys., 93:1 (1995), 1–17 | DOI

[46] A. S. Kronfeld, M. L. Laursen, G. Schierholz, U.-J. Wiese, “Monopole condensation and color confinement”, Phys. Lett. B, 198:4 (1987), 516–520 | DOI

[47] D. Galletly, M. Gürtler, R. Horsley et al. [QCDSF-UKQCD Collab.], “Hadron spectrum, quark masses, and decay constants from light overlap fermions on large lattices”, Phys. Rev. D, 75:7 (2007), 073015, 14 pp. | DOI

[48] L. Giusti, C. Hoelbling, M. Lüscher, H. Wittig, “Numerical techniques for lattice QCD in the $\epsilon$-regime”, Comp. Phys. Commun., 153:1 (2003), 31–51 | DOI

[49] S. Capitani, M. Göckeler, R. Horsley, P. E. L. Rakow, G. Schierholz, “Operator improvement for Ginsparg–Wilson fermions”, Phys. Lett. B, 468:1–2 (1999), 150–160 | DOI

[50] T. Banks, A. Casher, “Chiral symmetry breaking in confining theories”, Nucl. Phys. B, 169:1–2 (1980), 103–125 | DOI

[51] T. Guhr, J.-Z. Ma, S. Meyer, T. Wilke, “Statistical analysis and the equivalent of a Thouless energy in lattice QCD Dirac spectra”, Phys. Rev. D, 59:5 (1999), 054501, 14 pp. | DOI

[52] O. Bohigas, M.-J. Giannoni, “Chaotic motion and random matrix theories”, Mathematical and Computational Methods in Nuclear Physics, Lecture Notes in Physics, 209, eds. J. S. Dehesa, J. M. G. Gomez, A. Polls, Springer, Berlin, Heidelberg, 1984, 1–99 | DOI | MR

[53] M. F. Atiyah, V. K. Patodi, I. M. Singer, “Spectral asymmetry and Riemannian geometry. I”, Math. Proc. Cambridge Philos. Soc., 77:1 (1975), 43–69 | DOI | MR

[54] M. F. Atiyah, I. M. Singer, “The index of elliptic operators. I”, Ann. of Math. (2), 87:3 (1968), 484–530 | DOI | MR

[55] A. Di Giacomo, M. Hasegawa, “Instantons and monopoles”, Phys. Rev. D, 91:5 (2015), 054512, 13 pp. | DOI | MR

[56] L. Giusti1, M. Lüscher, P. Weisz, H. Wittig, “Lattice QCD in the $\epsilon$-regime and random matrix theory”, JHEP, 2003:11 (2003), 023, 15 pp. | DOI

[57] L. Del Debbio, L. Giusti, C. Pica, “Topological susceptibility in SU(3) gauge theory”, Phys. Rev. Lett., 94:3 (2005), 032003, 4 pp. | DOI

[58] A. Athenodorou, C. Bonanno, C. Bonati et al., “Topological susceptibility of $N_f=2+1$ QCD from staggered fermions spectral projectors at high temperatures”, JHEP, 2022:10 (2022), 197, 33 pp. | DOI

[59] E. V. Shuryak, “The role of instantons in quantum chromodynamics: (I). Physical vacuum”, Nucl. Phys. B, 203:1 (1982), 93–115 | DOI

[60] M. Gell-Mann, R. J. Oakes, B. Renner, “Behavior of current divergences under $SU_3\times SU_3$”, Phys. Rev., 175:5 (1968), 2195–2199 | DOI

[61] F. Niedermayer, “Exact chiral symmetry, topological charge and related topics”, Nucl. Phys. B. Proc. Suppl., 73:1–3 (1999), 105–119 | DOI

[62] L. Giusti, P. Hernández, M. Laine, P. Weisz, H. Wittig, “Low-energy couplings of QCD from current correlations near the chiral limit”, JHEP, 2004:04 (2004), 013, 20 pp. | DOI

[63] T. DeGrand, S. Schaefer, “Improving meson two-point functions in lattice QCD”, Comp. Phys. Commun., 159:3 (2004), 185–191 | DOI

[64] J. Wennekers, H. Wittig, “On the renormalized scalar density in quenched QCD”, JHEP, 2005:09 (2005), 059, 14 pp. | DOI

[65] J. Foley, K. J. Juge, A. Cais et al. [TrinLat Collab.], “Practical all-to-all propagators for lattice QCD”, Comput. Phys. Commun., 172:3 (2005), 145–162 | DOI

[66] H. Fukaya, S. Hashimoto, K. Ogawa, “Low-lying mode contribution to the quenched meson correlators in the $\epsilon$-regime”, Prog. Theor. Phys., 114:2 (2005), 451–476 | DOI

[67] H. Neff, N. Eicker, Th. Lippert, J. W. Negele, K. Schilling, “Low fermionic eigenmode dominance in QCD on the lattice”, Phys. Rev. D, 64:11 (2001), 114509, 12 pp. | DOI