Gauge equivalence of $1+1$ Calogero–Moser–Sutherland field
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 3, pp. 545-561 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the classical integrable $(1+1)$ trigonometric $gl_N$ Landau–Lifshitz models constructed by means of quantum $R$-matrices that also satisfy the associative Yang–Baxter equation. It is shown that a $(1+1)$ field analogue of the trigonometric Calogero–Moser–Sutherland model is gauge equivalent to the Landau–Lifshitz model that arises from the Antonov–Hasegawa–Zabrodin trigonometric nonstandard $R$-matrix. The latter generalizes Cherednik's $7$-vertex $R$-matrix in the $GL_2$ case to the case of $GL_N$. An explicit change of variables between the $(1+1)$ models is obtained.
Keywords: integrable systems, Landau–Lifshitz equation.
Mots-clés : soliton equations, Calogero–Moser model
@article{TMF_2024_219_3_a8,
     author = {K. R. Atalikov and A. V. Zotov},
     title = {Gauge equivalence of $1+1$ {Calogero{\textendash}Moser{\textendash}Sutherland} field},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {545--561},
     year = {2024},
     volume = {219},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a8/}
}
TY  - JOUR
AU  - K. R. Atalikov
AU  - A. V. Zotov
TI  - Gauge equivalence of $1+1$ Calogero–Moser–Sutherland field
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 545
EP  - 561
VL  - 219
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a8/
LA  - ru
ID  - TMF_2024_219_3_a8
ER  - 
%0 Journal Article
%A K. R. Atalikov
%A A. V. Zotov
%T Gauge equivalence of $1+1$ Calogero–Moser–Sutherland field
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 545-561
%V 219
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a8/
%G ru
%F TMF_2024_219_3_a8
K. R. Atalikov; A. V. Zotov. Gauge equivalence of $1+1$ Calogero–Moser–Sutherland field. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 3, pp. 545-561. http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a8/

[1] F. Calogero, “Exactly solvable one-dimensional many-body problems”, Lett. Nuovo Cimento, 13:11 (1975), 411–416 ; J. Moser, “Three integrable Hamiltonian systems connected with isospectral deformations”, Surveys in Applied Mathematics, Essays dedicated to S. M. Ulam: Proceedings of the first Los Alamos Symposium on Mathematics in the Natural Sciences (Los Alamos, NM, 1974), eds. N. Metropolis, S. Orszag, G.-C. Rota, Academic Press, New York, 1976, 235–258 ; B. Sutherland, “Exact results for a quantum many-body problem in one dimension”, Phys. Rev. A, 4:5 (1971), 2019–2021 | DOI | MR | DOI | MR | DOI

[2] T. Krasnov, A. Zotov, “Trigonometric integrable tops from solutions of associative Yang–Baxter equation”, Ann. Henri Poincaré, 20:8 (2019), 2671–2697, arXiv: 1812.04209 | DOI | MR

[3] V. Arnold, “Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l'hydrodynamique des fluides parfaits”, Ann. Inst. Fourier (Grenoble), 16:1 (1966), 319–361 ; Л. А. Дикий, “Замечание о гамильтоновых системах, связанных с группой вращений”, Функц. анализ и его прил., 6:4 (1972), 83–84 ; С. В. Манаков, “Замечание об интегрировании уравнений Эйлера динамики $n$-мерного твердого тела”, Функц. анализ и его прил., 10:4 (1976), 93–94 ; А. С. Мищенко, А. Т. Фоменко, “Уравнения Эйлера на конечномерных группах Ли”, Изв. АН СССР. Сер. матем., 42:2 (1978), 396–415 ; V. I. Arnold, B. A. Khesin, Topological Methods in Hydrodynamics, Applied Mathematical Sciences, 125, Springer, Cham, 2021 | DOI | MR | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR | Zbl | DOI | MR

[4] R. J. Baxter, “Eight-vertex model in lattice statistics and one-dimensional anisotropic Heisenberg chain. II. Equivalence to a generalized ice-type lattice model”, Ann. Phys., 76 (1973), 25–47 | DOI

[5] A. M. Levin, M. A. Olshanetsky, A. Zotov, “Hitchin systems – symplectic Hecke correspondence and two-dimensional version”, Commun. Math. Phys., 236:1 (2003), 93–133, arXiv: nlin/0110045 | DOI | MR

[6] A. V. Zotov, A. V. Smirnov, “Modifikatsii rassloenii, ellipticheskie integriruemye sistemy i svyazannye zadachi”, TMF, 177:1 (2013), 3–67 | DOI | DOI | MR | Zbl

[7] G. Aminov, S. Arthamonov, A. Smirnov, A. Zotov, “Rational top and its classical $R$-matrix”, J. Phys. A: Math. Theor., 47:30 (2014), 305207, 19 pp., arXiv: ; M. Vasilyev, A. Zotov, “On factorized Lax pairs for classical many-body integrable systems”, Rev. Math. Phys., 31:6 (2019), 1930002, 45 pp., arXiv: 1402.31891804.02777 | DOI | MR | DOI | MR

[8] A. Levin, M. Olshanetsky, A. Zotov, “Relativistic classical integrable tops and quantum $R$-matrices”, JHEP, 07 (2014), 012, 39 pp., arXiv: 1405.7523 | DOI

[9] A. Antonov, K. Hasegawa, A. Zabrodin, “On trigonometric intertwining vectors and non-dynamical $R$-matrix for the Ruijsenaars model”, Nucl. Phys. B, 503:3 (1997), 747–770, arXiv: hep-th/9704074 | DOI | MR

[10] I. V. Cherednik, “Ob odnom metode postroeniya faktorizovannykh $S$-matrits v elementarnykh funktsiyakh”, TMF, 43:1 (1980), 117–119 | DOI | MR

[11] A. V. Mikhailov, “Ob integriruemosti dvumernogo obobscheniya tsepochki Toda”, Pisma v ZhETF, 30:7 (1979), 443–448

[12] I. Krichever, “Vector bundles and Lax equations on algebraic curves”, Commun. Math. Phys., 229:2 (2002), 229–269, arXiv: hep-th/01081104 | DOI | MR

[13] A. A. Akhmetshin, Yu. S. Volvovskii, I. M. Krichever, “Ellipticheskie semeistva reshenii uravneniya Kadomtseva–Petviashvili i polevoi analog ellipticheskoi sistemy Kalodzhero–Mozera”, Funkts. analiz i ego pril., 36:4 (2002), 1–17, arXiv: hep-th/0203192 | DOI | DOI | MR | Zbl

[14] A. Zabrodin, A. Zotov, “Field analogue of the Ruijsenaars–Schneider model”, JHEP, 2022:7 (2022), 023, 51 pp., arXiv: 2107.01697 | DOI

[15] L. D. Landau, E. M. Lifshits, “K teorii dispersii magnitnoi pronitsaemosti ferromagnitnykh tel”: L. D. Landau, Sobranie trudov, v. 1, ed. E. M. Lifshits, Nauka, M., 1969, 128–143 ; Phys. Z. Sowjet., 8 (1935), 153–164 | DOI

[16] E. K. Sklyanin, “On complete integrability of the Landau–Lifshitz equation”, Preprint LOMI No E-3-79, 1979, Leningrad

[17] L. A. Takhtadzhyan, L. D. Faddeev, Gamiltonov podkhod v teorii solitonov, Nauka, M., 1986 | DOI | MR | MR

[18] I. Z. Golubchik, V. V. Sokolov, “Mnogokomponentnoe obobschenie ierarkhii uravneniya Landau–Lifshitsa”, TMF, 124:1 (2000), 62–71 | DOI | DOI | MR | Zbl

[19] K. Atalikov, A. Zotov, “Higher rank $1+1$ integrable Landau–Lifshitz field theories from associative Yang–Baxter equation”, JETP Lett., 115 (2022), 757–762, arXiv: 2204.12576 | DOI

[20] S. Fomin, A. N. Kirillov, “Quadratic algebras, Dunkl elements, and Schubert calculus”, Advances in Geometry, Progress in Mathematics, 172, eds. J. L. Brylinski, R. Brylinski, V. Nistor, B. Tsygan, P. Xu, Birkhäuser, Boston, MA, 1999, 147–182 | DOI | MR

[21] A. Polishchuk, “Massey products on cycles of projective lines and trigonometric solutions of the Yang–Baxter equations”, Algebra, Arithmetic, and Geometry, Progress in Mathematics, 270, eds. Y. Tschinkel, Y. Zarhin, Birkhäuser, Boston, MA, 2009, 573–617, arXiv: math/0612761 | DOI | MR

[22] T. Schedler, “Trigonometric solutions of the associative Yang–Baxter equation”, Math. Res. Lett., 10:2–3 (2003), 301–321, arXiv: math/0212258 | DOI | MR

[23] K. Atalikov, A. Zotov, “Field theory generalizations of two-body Calogero–Moser models in the form of Landau–Lifshitz equations”, J. Geom. Phys., 164 (2021), 104161, 14 pp., arXiv: 2010.14297 | DOI | MR

[24] K. Atalikov, A. Zotov, “Gauge equivalence between $1 + 1$ rational Calogero–Moser field theory and higher rank Landau–Lifshitz equation”, JETP Lett., 117:8 (2023), 630–634, arXiv: 2303.08020 | DOI

[25] V. E. Zakharov, L. A. Takhtadzhyan, “Ekvivalentnost nelineinogo uravneniya Shredingera i uravneniya ferromagnetika Geizenberga”, TMF, 38:1 (1979), 26–35 ; M. Lakshmanan, “Continuum spin system as an exactly solvable dynamical system”, Phys. Lett. A, 61:1 (1977), 53–54 ; A. Kundu, “Landau–Lifshitz and higher-order nonlinear systems gauge generated from nonlinear Schrödinger-type equations”, J. Math. Phys., 25:12 (1984), 3433–3438 | DOI | MR | DOI | DOI | MR

[26] J. Balog, L. Da̧browski, L. Fehér, “Classical $r$-matrix and exchange algebra in WZNW and Toda theories”, Phys. Lett. B, 244:2 (1990), 227–234 | DOI | MR

[27] A. Levin, M. Olshanetsky, A. Zotov, “Noncommutative extensions of elliptic integrable Euler–Arnold tops and Painlevé VI equation”, J. Phys. A: Math. Theor., 49:39 (2016), 395202, 24 pp., arXiv: 1603.06101 | DOI | MR