Multibreather-like solutions of the real and complex reverse space-time nonlocal defocusing short-pulse equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 3, pp. 508-522 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Multibreather-like solutions in determinant form for the real and complex reverse space–time nonlocal defocusing short-pulse equations are constructed via Darboux transformations and nonlocal reductions. It is shown that the multibreather-like solutions of these two equations can be obtained only by reducing the even multisoliton solutions of the two-component short-pulse equation. As examples, $1,2$-breather-like solutions and their dynamics are illustrated graphically.
Keywords: two-component short-pulse equation, reverse space–time nonlocal defocusing short-pulse equations, reciprocal transformation, multibreather-like solutions.
Mots-clés : Darboux transformation
@article{TMF_2024_219_3_a5,
     author = {Hui Mao},
     title = {Multibreather-like solutions of the~real and complex reverse space-time nonlocal defocusing short-pulse equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {508--522},
     year = {2024},
     volume = {219},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a5/}
}
TY  - JOUR
AU  - Hui Mao
TI  - Multibreather-like solutions of the real and complex reverse space-time nonlocal defocusing short-pulse equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 508
EP  - 522
VL  - 219
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a5/
LA  - ru
ID  - TMF_2024_219_3_a5
ER  - 
%0 Journal Article
%A Hui Mao
%T Multibreather-like solutions of the real and complex reverse space-time nonlocal defocusing short-pulse equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 508-522
%V 219
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a5/
%G ru
%F TMF_2024_219_3_a5
Hui Mao. Multibreather-like solutions of the real and complex reverse space-time nonlocal defocusing short-pulse equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 3, pp. 508-522. http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a5/

[1] C. M. Bender, S. Boettcher, “Real spectra in non-Hermitian Hamiltonians having $\mathscr{P\!T}$ symmetry”, Phys. Rev. Lett., 80:24 (1998), 5243–5246 | DOI | MR

[2] C. M. Bender, PT Symmetry in Quantum and Classical Physics, World Sci., Hackensack, NJ, 2019 | DOI | MR

[3] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation”, Phys. Rev. Lett., 110:6 (2013), 064105, 5 pp. | DOI

[4] A. K. Sarma, M.-A. Miri, Z. H. Musslimani, D. N. Christodoulides, “Continuous and discrete Schrödinger systems with parity-time-symmetric nonlinearities”, Phys. Rev. E, 89:5 (2014), 052918, 7 pp. | DOI

[5] B. Yang, J. Yang, “Transformations between nonlocal and local integrable equations”, Stud. Appl. Math., 140:2 (2018), 178–201 | DOI | MR

[6] J. C. Brunelli, “Nonlocal short pulse equations”, Braz. J. Phys., 48:4 (2018), 421–425 | DOI

[7] M. J. Ablowitz, Z. H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:3 (2016), 915–946 | DOI | MR

[8] D. Sinha, P. K. Ghosh, “Integrable nonlocal vector nonlinear Schrödinger equation with self-induced parity-time-symmetric potential”, Phys. Lett. A, 381:3 (2017), 124–128 | DOI | MR

[9] M. J. Ablowitz, Z. H. Musslimani, “Inverse scattering transform for the integrable nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:3 (2016), 915–946 | DOI | MR

[10] M. J. Ablowitz, X.-D. Luo, Z. H. Musslimani, “Inverse scattering transform for the nonlocal nonlinear Schrödinger equation with nonzero boundary conditions”, J. Math. Phys., 59:1 (2018), 011501, 42 pp. | DOI | MR

[11] M. J. Ablowitz, B.-F. Feng, X.-D. Luo, Z. H. Musslimani, “Reverse space-time nonlocal sine-Gordon/sinh-Gordon equations with nonzero boundary conditions”, Stud. Appl. Math., 141:3 (2018), 267–307 | DOI | MR

[12] Ya. Rybalko, D. Shepelsky, “Long-time asymptotics for the integrable nonlocal nonlinear Schrödinger equation”, J. Math. Phys., 60:3 (2019), 031504, 16 pp. | DOI | MR

[13] J.-L. Ji, Z.-N. Zhu, “Soliton solutions of an integrable nonlocal modified Korteweg–de Vries equation through inverse scattering transform”, J. Math. Anal. Appl., 453:2 (2017), 973–984 | DOI | MR

[14] Y. Hanif, H. Sarfraz, U. Saleem, “Dynamics of loop soliton solutions of $\mathcal{PT}$-symmetric nonlocal short pulse equation”, Nonlinear Dyn., 100:2 (2020), 1559–1569 | DOI

[15] G. Zhang, Z. Yan, “Inverse scattering transforms and soliton solutions of focusing and defocusing nonlocal mKdV equations with non-zero boundary conditions”, Phys. D, 402 (2020), 132170, 14 pp. | DOI | MR

[16] H. Sarfraz, U. Saleem, “Symmetry broken and symmetry preserving multi-soliton solutions for nonlocal complex short pulse equation”, Chaos Solitons Fractals, 130 (2020), 109451, 8 pp. | DOI | MR

[17] M. L. Rabelo, “On equations which describe pseudospherical surfaces”, Stud. Appl. Math., 81:3 (1989), 221–248 | DOI | MR

[18] T. Schäfer, C. E. Wayne, “Propagation of ultra-short optical pulses in cubic nonlinear media”, Phys. D, 196:1–2 (2004), 90–105 | DOI | MR | Zbl

[19] Y. Chung, C. K. T. Jones, T. Schäfer, C. E. Wayne, “Ultra-short pulses in linear and nonlinear media”, Nonlinearity, 18:3 (2005), 1351–1374, arXiv: nlin/0408020 | DOI | MR

[20] D. V. Kartashov, A. V. Kim, S. A. Skobelev, “Solitonnye struktury volnovogo polya s proizvolnym chislom kolebanii v nerezonansnykh sredakh”, Pisma v ZhETF, 78:5 (2003), 722–726 | DOI

[21] S. Sakovich, “Integrability of the vector short pulse equation”, J. Phys. Soc. Japan, 77:12 (2008), 123001, 4 pp. | DOI

[22] A. Dimakis, F. Müller-Hoissen, “Bidifferential calculus approach to AKNS hierarchies and their solutions”, SIGMA, 6 (2010), 055, 27 pp., arXiv: 1004.1627 | DOI | MR

[23] M. Pietrzyk, I. Kanattšikov, U. Bandelow, “On the propagation of vector ultra-short pulses”, J. Nonlinear Math. Phys., 15:2 (2008), 162–170 | DOI | MR

[24] Y. Yao, Y. Zeng, “Coupled short pulse hierarchy and its Hamiltonian structure”, J. Phys. Soc. Japan, 80:6 (2011), 064004, 4 pp. | DOI

[25] Y. Matsuno, “A novel multi-component generalization of the short pulse equation and its multisoliton solutions”, J. Math. Phys., 52:12 (2011), 123702, 22 pp., arXiv: 1111.1792 | DOI | MR

[26] B.-F. Feng, “An integrable coupled short pulse equation”, J. Phys. A, 45:8 (2012), 085202, 14 pp. | DOI | MR

[27] X. Wang, J. S. He, “Darboux transformation and general soliton solutions for the reverse space-time nonlocal short pulse equation”, Phys. D, 446 (2023), 133639, 20 pp. | DOI | MR