Revisiting solutions of the Adler–Bobenko–Suris lattice equations and lattice Boussinesq-type equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 3, pp. 474-507 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Solutions of all Adler–Bobenko–Suris equations except $Q4$, and of several lattice Boussinesq-type equations are reconsidered by using the Cauchy matrix approach. By introducing a “fake” nonautonomous plane-wave factor, we derive soliton solutions, oscillatory solutions, and semi-oscillatory solutions of the target lattice equations. Unlike the conventional soliton solutions, the oscillatory solutions take constant values on all elementary quadrilaterals on $\mathbb{Z}^2$, which demonstrates a periodic structure.
Keywords: Cauchy matrix approach, Adler–Bobenko–Suris lattice equations, (semi-)oscillatory solutions.
Mots-clés : lattice Boussinesq-type equations, soliton solutions
@article{TMF_2024_219_3_a4,
     author = {Song-lin Zhao and K{\cyre} Yan and Ying-ying Sun},
     title = {Revisiting solutions of {the~Adler{\textendash}Bobenko{\textendash}Suris} lattice equations and lattice {Boussinesq-type} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {474--507},
     year = {2024},
     volume = {219},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a4/}
}
TY  - JOUR
AU  - Song-lin Zhao
AU  - Kе Yan
AU  - Ying-ying Sun
TI  - Revisiting solutions of the Adler–Bobenko–Suris lattice equations and lattice Boussinesq-type equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 474
EP  - 507
VL  - 219
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a4/
LA  - ru
ID  - TMF_2024_219_3_a4
ER  - 
%0 Journal Article
%A Song-lin Zhao
%A Kе Yan
%A Ying-ying Sun
%T Revisiting solutions of the Adler–Bobenko–Suris lattice equations and lattice Boussinesq-type equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 474-507
%V 219
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a4/
%G ru
%F TMF_2024_219_3_a4
Song-lin Zhao; Kе Yan; Ying-ying Sun. Revisiting solutions of the Adler–Bobenko–Suris lattice equations and lattice Boussinesq-type equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 3, pp. 474-507. http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a4/

[1] F. W. Nijhoff, A. J. Walker, “The discrete and continuous Painlevé VI hierarchy and the Garnier system”, Glasg. Math. J., 43:A (2001), 109–123 | DOI | MR

[2] V. E. Adler, A. I. Bobenko, Yu. B. Suris, “Diskretnye nelineinye giperbolicheskie uravneniya. Klassifikatsiya integriruemykh sluchaev”, Funkts. analiz i ego pril., 43:1 (2009), 3–21 | DOI | DOI | MR | Zbl

[3] V. E. Adler, A. I. Bobenko, Yu. B. Suris, “Classification of integrable discrete equations of octahedron type”, Int. Math. Res. Not., 2012:8 (2012), 1822–1889 | DOI | MR

[4] A. I. Bobenko, Yu. B. Suris, “Integrable systems on quad-graphs”, Internat. Math. Res. Not., 2002:11 (2002), 573–611 | DOI | MR | Zbl

[5] R. Boll, “Classification of $3D$ consistent quad-equations”, J. Nonlinear Math. Phys., 18:3 (2011), 337–365 | DOI | MR | Zbl

[6] D.-D. Zhang, P. H. van der Kamp, D.-J. Zhang, “Multi-component extension of CAC systems”, SIGMA, 16 (2020), 060, 30 pp., arXiv: 1912.00713 | DOI | MR

[7] J. Atkinson, “Bäcklund transformations for integrable lattice equations”, J. Phys. A: Math. Theor., 41:13 (2008), 135202, 8 pp. | DOI | MR

[8] T. Bridgman, W. Hereman, G. R. W. Quispel, P. H. van der Kamp, “Symbolic computation of Lax pairs of partial difference equations using consistency around the cube”, Found. Comput. Math., 13:4 (2013), 517–544 | DOI | MR

[9] F. W. Nijhoff, “Lax pair for the Adler (lattice Krichever–Novikov) system”, Phys. Lett. A, 297:1–2 (2002), 49–58, arXiv: nlin/0110027 | DOI | MR | Zbl

[10] V. E. Adler, A. I. Bobenko, Yu. B. Suris, “Classification of integrable equations on quad- graphs. The consistency approach”, Commun. Math. Phys., 233:3 (2003), 513–543, arXiv: nlin/0202024 | DOI | MR | Zbl

[11] V. E. Adler, “Bäcklund transformation for the Krichever–Novikov equation”, Internat. Math. Res. Notes, 1998, no. 1, 1–4 | DOI | MR | Zbl

[12] J. Hietarinta, “Searching for CAC-maps”, J. Nonlinear Math. Phys., 12:supp. 2 (2005), 223–230 | DOI | MR | Zbl

[13] H. D. Wahlquist, F. B. Estabrook, “Bäcklund transformation for solutions of the Korteweg–de Vries equation”, Phys. Rev. Lett., 31:23 (1973), 1386–1390 | DOI | MR

[14] F. W. Nijhoff, H. Capel, “The discrete Korteweg–de Vries equation”, Acta Appl. Math., 39:1–3 (1995), 133–158 | DOI | MR

[15] F. W. Nijhoff, G. R. W. Quispel, H. W. Capel, “Direct linearization of nonlinear difference-difference equations”, Phys. Lett. A, 97:4 (1983), 125–128 | DOI | MR

[16] A. J. Walker, Similarity reductions and integrable lattice equations, PhD thesis, Leeds University, 2001

[17] A. Tongas, F. Nijhoff, “The Boussinesq integrable system: compatible lattice and continuum structures”, Glasg. Math. J., 47:A (2005), 205–219 | DOI | MR

[18] F. W. Nijhoff, V. G. Papageorgiou, H. W. Capel, G. R. W. Quispel, “The lattice Gel'fand–Dikii hierarchy”, Inverse Problems, 8:4 (1992), 597–621 | DOI | MR

[19] Y.-Y. Sun, W.-Y. Sun, “An update of a Bäcklund transformation and its applications to the Boussinesq system”, Appl. Math. Comput., 421 (2022), 126964, 14 pp. | DOI | MR

[20] F. Nijhoff, “On some ‘Schwarzian’ equations and their discrete analogues”, Algebraic Aspects of Integrable Systems: In memory of Irene Dorfman, Progress in Nonlinear Differential Equations and Their Applications, 26, eds. A. S. Fokas, I. M. Gel'fand, Birkhäuser, Boston, 1996, 237–260 | DOI | MR

[21] J. Hietarinta, “Boussinesq-like multi-component lattice equations and multi-dimensional consistency”, J. Phys. A: Math. Theor., 44:16 (2011), 165204, 22 pp., arXiv: 1011.1978 | DOI | MR

[22] D.-J. Zhang, S.-L. Zhao, F. W. Nijhoff, “Direct linearization of extended lattice BSQ systems”, Stud. Appl. Math., 129:2 (2012), 220–248 | DOI | MR

[23] J. Hietarinta, D.-J. Zhang, “Discrete Boussinesq-type equations”, Nonlinear Systems and their Remarkable Mathematical Structures, v. 3, Contributions from China, eds. N. Euler, D.-J. Zhang, CRC Press, Boca Raton, FL, 2022, 54–101 | DOI | MR

[24] S. Butler, “Multidimensional inverse scattering of integrable lattice equations”, Nonlinearity, 25:6 (2012), 1613–1634 | DOI | MR

[25] S. Butler, N. Joshi, “An inverse scattering transform for the lattice potential KdV equation”, Inverse Probl., 26:11 (2010), 115012, 28 pp. | DOI | MR

[26] Y. Shi, J. J. C. Nimmo, D.-J. Zhang, “Darboux and binary Darboux transformations for discrete integrable systems I. Discrete potential KdV equation”, J. Phys. A: Math. Theor., 47:2 (2013), 025205, 11 pp. | DOI | MR

[27] Y. Shi, J. J. C. Nimmo, J.-X. Zhao, “Darboux and binary Darboux transformations for discrete integrable systems. II. Discrete potential mKdV equation”, SIGMA, 13 (2017), 036, 18 pp., arXiv: 1705.09896 | DOI | MR

[28] Y. Shi, J. X. Zhao, “Discrete modified Boussinesq equation and Darboux transformation”, Appl. Math. Lett., 86 (2018), 141–148 | MR

[29] J. Hietarinta, D.-J. Zhang, “Soliton solutions for ABS lattice equations. II. Casoratians and bilinearization”, J. Phys. A: Math. Theor., 42:40 (2009), 404006, 30 pp. | DOI | MR

[30] J. Hietarinta, D.-J. Zhang, “Multisoliton solutions to the lattice Boussinesq equation”, J. Math. Phys., 51:3 (2010), 033505, 12 pp. | DOI | MR

[31] J. Hietarinta, D.-J. Zhang, “Soliton taxonomy for a modification of the lattice Boussinesq equation”, SIGMA, 7 (2011), 061, 14 pp. | DOI | MR

[32] D.-J. Zhang, J. Hietarinta, “Generalized solutions for the H1 model in ABS list of lattice equations”, AIP Conf. Proc., 1212:1 (2010), 154–161 | DOI | MR

[33] W. Feng, S.-L. Zhao, D.-J. Zhang, “Exact solutions to lattice Boussinesq-type equations”, J. Nonlinear Math. Phys., 19:4 (2012), 1250031, 15 pp. | DOI | MR

[34] F. Nijhoff, J. Atkinson, J. Hietarinta, “Soliton solutions for ABS lattice equations: I. Cauchy matrix approach”, J. Phys. A: Math. Theor., 42:40 (2009), 404005, 34 pp. | DOI | MR

[35] D.-J. Zhang, S.-L. Zhao, “Solutions to ABS lattice equations via generalized Cauchy matrix approach”, Stud. Appl. Math., 131:1 (2013), 72–103 | DOI | MR

[36] H. Wu, H.-C. Zheng, D.-J. Zhang, “Oscillatory solutions of lattice potential Korteweg–de Vries equation”, Commun. Appl. Math. Comput., 30:4 (2016), 482–489 | MR

[37] W. Feng, S.-L. Zhao, “Oscillatory solutions for lattice Korteweg–de Vries-type equations”, Z. Naturforsch. A, 73:2 (2018), 91–98 | DOI

[38] W. Feng, S.-L. Zhao, “Generalized Cauchy matrix approach for lattice KP-type equations”, Commun. Nonlinear Sci. Numer. Simulat., 18:7 (2013), 652–1664 | DOI

[39] Mae-Bel Mesfun, Sun-Lin Chzhao, “Metod matrits Koshi dlya poludiskretnykh reshetochnykh uravnenii tipa Kortevega–de Friza”, TMF, 211:1 (2022), 48–64 | DOI | DOI | MR

[40] D.-D. Xu, D.-J. Zhang, S.-L. Zhao, “The Sylvester equation and integrable equations: I. The Korteweg–de Vries system and sine-Gordon equation”, J. Nonlinear Math. Phys., 21:3 (2014), 382–406 | DOI | MR

[41] J. Sylvester, “Sur l'équation en matrices $px=xq$”, C. R. Acad. Sci. Paris, 99:2 (1884), 67–71, 115–116 | Zbl

[42] R. Bhatia, P. Rosenthal, “How and why to solve the operator equation $AX-XB=Y$”, Bull. London Math. Soc., 29:1 (1997), 1–21 | DOI | MR

[43] D.-J. Zhang, Notes on solutions in Wronskian form to soliton equations: KdV-type, arXiv: nlin/0603008

[44] D.-J. Zhang, S.-L. Zhao, Y.-Y. Sun, J. Zhou, “Solutions to the modified Korteweg–de Vries equation”, Rev. Math. Phys., 26:7 (2014), 14300064, 42 pp. | DOI | MR

[45] W. Fu, D.-J. Zhang, R.-G. Zhou, “A class of two-component Adler–Bobenko–Suris lattice equations”, Chin. Phys. Lett., 31:9 (2014), 090202, 5 pp. | DOI

[46] W. Feng, S.-L. Zhao, “Solutions and three-dimensional consistency for nonautonomous extended lattice Boussinesq-type equations”, Rep. Math. Phys., 78:2 (2016), 219–243 | DOI | MR

[47] X. Wang, D.-J. Zhang, S.-L. Zhao, “Solutions to the non-autonomous ABS lattice equations: generalized Cauchy matrix approach”, Commun. Appl. Math. Comput., 32:1 (2018), 1–25 | MR

[48] G.-Y. Tela, S.-L. Zhao, D.-J. Zhang, “On the fourth-order lattice Gel'fand–Dikii equations”, SIGMA, 19 (2023), 007, 30 pp. | DOI | MR

[49] Y. Shi, D.-J. Zhang, S.-L. Zhao, “Solutions to the non-autonomous ABS lattice equations: Casoratians and bilinearization”, Sci. Sin. Math., 44:1 (2014), 37–54, arXiv: (in Chinese) 1201.6478 | DOI