A hierarchy of the nonlocal nonlinear Schrödinger equation with self-consistent sources and dynamics
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 3, pp. 462-473 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A hierarchy of the nonlocal nonlinear Schrödinger equation with self-consistent sources is introduced. The physically significant nonlinear equation is associated with the AKNS spectral problem. In the nonlocal case, the squared eigenfunction of the $L$ operator leads to some changes in the term of the source that affect the motion of solitons. The soliton solutions of the nonlocal nonlinear Schrödinger equation with self-consistent sources are presented using the inverse scattering transform. The dynamics of the solitons are illustrated, which differ from those of the nonlocal equation without a source.
Keywords: self-consistent source, inverse scattering transform, nonlocal nonlinear Schrödinger equation, dynamics.
@article{TMF_2024_219_3_a3,
     author = {Qi Li and Qiu-yuan Duan},
     title = {A hierarchy of the nonlocal nonlinear {Schr\"odinger} equation with self-consistent sources and dynamics},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {462--473},
     year = {2024},
     volume = {219},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a3/}
}
TY  - JOUR
AU  - Qi Li
AU  - Qiu-yuan Duan
TI  - A hierarchy of the nonlocal nonlinear Schrödinger equation with self-consistent sources and dynamics
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 462
EP  - 473
VL  - 219
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a3/
LA  - ru
ID  - TMF_2024_219_3_a3
ER  - 
%0 Journal Article
%A Qi Li
%A Qiu-yuan Duan
%T A hierarchy of the nonlocal nonlinear Schrödinger equation with self-consistent sources and dynamics
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 462-473
%V 219
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a3/
%G ru
%F TMF_2024_219_3_a3
Qi Li; Qiu-yuan Duan. A hierarchy of the nonlocal nonlinear Schrödinger equation with self-consistent sources and dynamics. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 3, pp. 462-473. http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a3/

[1] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal nonlinear Schrödinger equation”, Phys. Rev. Lett., 110:6 (2013), 064105, 5 pp. | DOI

[2] M. J. Ablowitz, Z. H. Musslimani, “Integrable nonlocal asymptotic reductions of physically significant nonlinear equations”, J. Phys. A: Math. Theor., 52:15 (2019), 15LT02, 8 pp. | DOI | MR

[3] S. Y. Lou, F. Huang, “Alice–Bob physics: coherent solutions of nonlocal KdV systems”, Sci. Rep., 7 (2017), 869, 11 pp. | DOI

[4] A. S. Fokas, “Integrable multidimensional versions of the nonlocal nonlinear Schrödinger equation”, Nonlinearity, 29:2 (2016), 319–324 | DOI | MR

[5] K. Chen, D.-J. Zhang, “Solutions of the nonlocal nonlinear Schrödinger hierarchy via reduction”, Appl. Math. Lett., 75 (2018), 82–88 | DOI | MR

[6] X. Deng, S. Y. Lou, D.-J. Zhang, “Bilinearisation-reduction approach to the nonlocal discrete nonlinear Schrödinger equations”, Appl. Math. Comput., 332 (2018), 477–483 | MR

[7] J. Song, Z. J. Zhou, W. F. Weng, Z. Y. Yan, “$\mathscr{P\!T}$-symmetric peakon solutions in self-focusing/defocusing power-law nonlinear media: Stability, interactions and adiabatic excitations”, Physica D, 435 (2022), 133266, 16 pp. | DOI | MR

[8] H. J. Zhou, Y. Chen, “Breathers and rogue waves on the double-periodic background for the reverse-space-time derivative nonlinear Schrödinger equation”, Nonlinear Dynamics, 106:4 (2021), 3437–3451 | DOI

[9] Y. L. Cao, J. S. He, Y. Cheng, “The partial-rogue ripple solutions of nonlocal Kadomtsev–Petviashvili equation”, Physica D, 458 (2024), 133990, 14 pp. | DOI | MR

[10] W. X. Ma, “Riemann–Hilbert problems and soliton solutions of nonlocal real reverse-spacetime mKdV equations”, J. Math. Anal. Appl., 498:2 (2021), 124980, 13 pp. | DOI | MR

[11] J.-L. Ji, Z.-N. Zhu, “On a nonlocal modified Korteweg–de Vries equation: integrability, Darboux transformation and soliton solutions”, Commun. Nonlinear Sci. Numer. Simul., 42 (2017), 699–708 | DOI | MR

[12] Z.-X. Zhou, “Darboux transformations and global solutions for a nonlocal derivative nonlinear Schrödinger equation”, Commun. Nonlinear Sci. Numer. Simul., 62 (2018), 480–488 | DOI | MR

[13] J. Rao, Y. Cheng, J. He, “Rational and semirational solutions of the nonlocal Davey–Stewartson equations”, Stud. Appl. Math., 139:4 (2017), 568–598 | DOI | MR

[14] K. Chen, X. Deng, S. Y. Lou, D.-J. Zhang, “Solutions of nonlocal equations reduced from the AKNS hierarchy”, Stud. Appl. Math., 141:1 (2018), 113–141 | DOI | MR

[15] V. K. Mel'nikov, “Capture and confinement of solitons in nolinear integrable systems”, Commun. Math. Phys., 120:3 (1989), 451–468 | DOI | MR

[16] V. K. Mel'nikov, “Interaction of solitary waves in the system described by the Kadomtsev–Petviashvili equation with a self-consistent sources”, Commun. Math. Phys., 126:1 (1989), 201–215 | DOI | MR

[17] V. K. Mel'nikov, “Integration method of the nonlinear Schrödinger equation with a self-consistent source”, Inverse Problems, 8:1 (1992), 133–147 | DOI | MR

[18] Y. B. Zeng, W.-X. Ma, R. L. Lin, “Integration of the soliton hierarchy with self-consistent sources”, J. Math. Phys., 41:8 (2000), 5453–5489 | DOI | MR

[19] D.-J. Zhang, “The $N$-soliton solutions for the modified KdV equation with self-consistent sources”, J. Phys. Soc. Japan, 71:11 (2002), 2649–2656 | DOI | MR

[20] Q. Li, D.-J. Zhang, D.-Y. Chen, “Solving the hierarchy of the nonisospectral KdV equation with self-consistent sources via the inverse scattering transform”, J. Phys. A: Math. Theor., 41:35 (2008), 355209, 14 pp. | DOI | MR

[21] Q. Li, D.-J. Zhang, D.-Y. Chen, “Solving non-isospectral mKdV equation and sine-Gordon equation hierarchies with self-consistent sources via inverse scattering transform”, Commun. Theor. Phys. (Beijing), 54:2 (2010), 219–228 | DOI | MR

[22] Q. Li, W. Zhang, Q.-Y. Duan, D.-Y. Chen, “The transformation between the AKNS hierarchy and the KN hierarchy with self-consistent sources”, J. Nonlinear Math. Phys., 18:4 (2011), 483–490 | DOI | MR

[23] H.-J. Tian, D.-J. Zhang, “Cauchy matrix approach to integrable equations with self-consistent sources and the Yajima–Oikawa system”, Appl. Math. Lett., 103 (2020), 106165, 7 pp. | DOI | MR

[24] A. Doliwa, R. L. Lin, Z. Wang, “Discrete Darboux system with self-consistent sources and its symmetric reduction”, J. Phys. A: Math. Theor., 54:5 (2021), 054001, 22 pp. | DOI | MR

[25] M. Ablovits, Kh. Sigur, Solitony i metod obratnoi zadachi, Mir, M., 1987 | MR | Zbl