Mots-clés : Painlevé IV equation, Heun equation.
@article{TMF_2024_219_3_a2,
author = {Dan Wang},
title = {The~Hankel determinant for a~semiclassical {Laguerre} unitary ensemble, {Painlev\'e~IV} and {Heun} equations},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {440--461},
year = {2024},
volume = {219},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a2/}
}
TY - JOUR AU - Dan Wang TI - The Hankel determinant for a semiclassical Laguerre unitary ensemble, Painlevé IV and Heun equations JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 440 EP - 461 VL - 219 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a2/ LA - ru ID - TMF_2024_219_3_a2 ER -
Dan Wang. The Hankel determinant for a semiclassical Laguerre unitary ensemble, Painlevé IV and Heun equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 3, pp. 440-461. http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a2/
[1] M. L. Mehta, Random Matrices, Elsevier, Amsterdam, 2004 | MR
[2] E. Basor, Y. Chen, L. Zhang, “PDEs satisfied by extreme eigenvalues distributions of GUE and LUE”, Random Matrices Theory Appl., 1:1 (2012), 1150003, 21 pp. | DOI | MR
[3] E. Basor, Y. Chen, T. Ehrhardt, “Painlevé V and time-dependent Jacobi polynomials”, J. Phys. A: Math. Theor., 43:1 (2010), 015204, 25 pp. | DOI | MR
[4] G. Sege, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 | MR | Zbl | Zbl
[5] Y. Chen, N. S. Haq, M. R. McKay, “Random matrix models, double-time Painlevé equations, and wireless relaying”, J. Math. Phys., 54:6 (2013), 063506, 55 pp. | DOI | MR
[6] Y. Chen, M. R. McKay, “Coulomb fluid, Painlevé transcendents and the information theory of MIMO systems”, IEEE Trans. Inform. Theory, 58:7 (2012), 4594–4634 | DOI | MR
[7] S. Lyu, Y. Chen, E. Fan, “Asymptotic gap probability distributions of the Gaussian unitary ensembles and Jacobi unitary ensembles”, Nucl. Phys. B, 926 (2018), 639–670 | DOI | MR
[8] C. Min, Y. Chen, “Gap probability distribution of the Jacobi unitary ensemble: an elementary treatment, from finite $n$ to double scaling”, Stud. Appl. Math., 140:2 (2018), 202–220 | DOI | MR
[9] Y. Chen, D. Dai, “Painelvé V and a Pollaczek–Jacobi type orthogonal polynomials”, J. Approx. Theory, 162:12 (2010), 2149–2167 | DOI | MR
[10] Y. Chen, L. Zhang, “Painlevé VI and the unitary Jacobi ensembles”, Stud. Appl. Math., 125:1 (2010), 91–112 | DOI | MR
[11] D. Dai, L. Zhang, “Painlevé VI and Hankel determinants for the generized Jacobi weight”, J. Phys. A: Math. Theor., 43:5 (2010), 055207, 14 pp. | DOI | MR
[12] E. Basor, Y. Chen, “Painlevé V and the distribution function of a discontinuous linear statistics in the Laguerre unitary ensembles”, J. Phys. A: Math. Theor., 42:3 (2009), 035203, 18 pp. | DOI | MR
[13] E. Basor, Y. Chen, “Perturbed Laguerre unitary ensembles, Hankel determinants, and information theory”, Math. Methods Appl. Sci., 38:18 (2015), 4840–4851 | DOI | MR
[14] S. Lyu, J. Griffin, Y. Chen, “The Hankel determinant associated with a singularly perturbed Laguerre unitary ensemble”, J. Nonlinear Math. Phys., 26:1 (2019), 24–53 | DOI | MR
[15] Y. Chen, M. V. Feigin, “Painlevé IV and degenerate Gaussian unitary ensembles”, J. Phys. A: Math. Gen., 39:40 (2006), 12381–12393 | DOI | MR
[16] Y. Chen, G. Pruessner, “Orthogonal polynomials with discontinuous weights”, J. Phys. A: Math. Gen., 38:12 (2005), L191–L198 | MR
[17] P. A. Clarkson, K. Jordaan, “The relationship between semiclassical Laguerre polynomials and the fourth Painlevé equation”, Constr. Approx., 39:1 (2014), 223–254 | DOI | MR
[18] Y. Chen, M. E. H. Ismail, “Ladder operators and differential equations for orthogonal polynomials”, J. Phys. A: Math. Gen., 30:22 (1997), 7817–7829 | DOI | MR
[19] Y. Chen, M. E. H. Ismail, “Thermodynamic relations of the Hermitian matrix ensembles”, J. Phys. A: Math. Gen., 30:19 (1997), 6633–6654 | DOI | MR
[20] W. C. Bauldry, “Estimate of the asymmetric Freud polynpomials on the real line”, J. Approx. Theory, 63:2 (1990), 225–237 | DOI | MR
[21] S. Belmehdi, A. Ronveaux, “Laguerre–Freud's equations for the recurrence coefficients of semi-classical orthogonal polynomials”, J. Approx. Theory, 76:3 (1994), 351–368 | DOI | MR
[22] S. Bonan, D. S. Clark, “Estimates of the orthogonal polynomials with weight $\exp(-x^m)$, $m$ an even positive integer”, J. Approx. Theory, 46:4 (1986), 408–410 | DOI | MR
[23] S. Bonan, D. S. Clark, “Estimates of the Hermite and the Freud polynomials”, J. Approx. Theory, 63:2 (1990), 210–224 | DOI | MR
[24] S. Bonan, P. Nevai, “Orthogonal polynomials and their derivatives. I”, J. Approx. Theory, 40:2 (1984), 134–147 | DOI | MR
[25] F. J. Dyson, “Statistical theory of the energy levels of complex systems. I”, J. Math. Phys., 3:1 (1962), 140–156 ; “II”, 157–165 ; “III”, 166–175 | DOI | DOI | DOI | MR
[26] E. B. Saff, V. Totik, Logarithmic Potentials with External Fields, Grundlehren der mathematischen Wissenschaften, 316, Springer, Berlin, Heidelberg, 1997 | DOI | MR
[27] C. Min, Y. Chen, “Painlevé IV, Chazy II, and asymptotics for recurrence coefficients of semi-classical Laguerre polynomials and their Hankel determinants”, Math. Methods Appl. Sci., 46:14 (2023), 15270–15284 | DOI
[28] Y. Chen, D. S. Lubinsky, “Smallest eigenvalues of Hankel matrices for exponential weights”, J. Math. Anal. Appl., 293:2 (2004), 476–495 | DOI | MR
[29] Y. Chen, N. Lawrence, “Small eigenvalues of large Hankel matrices”, J. Phys. A: Math. Gen., 32:42 (1999), 7305–7315 | DOI | MR
[30] Y. Chen, N. Lawrence, “On the linear statistics of Hermitian random matrices”, J. Phys. A: Math. Gen., 31:4 (1998), 1141–1152 | DOI | MR
[31] M. Chen, Y. Chen, “Singular linear statistics of the Laguerre unitary ensemble and Painlevé. III. Double scaling analysis”, J. Math. Phys., 56:6 (2015), 063506, 14 pp. | DOI | MR
[32] A. Ronveaux (ed.), Heun's Differential Equations, Oxford Univ. Press, Oxford, 1995 | MR | Zbl
[33] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge Univ. Press, Cambridge, 2005 | DOI | MR