The Hankel determinant for a semiclassical Laguerre unitary ensemble, Painlevé IV and Heun equations
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 3, pp. 440-461 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We analyze the asymptotic behavior of the Hankel determinant generated by a semiclassical Laguerre weight. For this, we use ladder operators and track the evolution of parameters to establish that an auxiliary quantity associated with the semiclassical Laguerre weight satisfies the Painlevé IV equation, subject to suitable transformations of variables. Using the Coulomb fluid method, we derive the large-$n$ expansion of the logarithmic form of the Hankel determinant. This allows us to gain insights into the scaling and fluctuations of the determinant, providing a deeper understanding of its behavior in the semiclassical Laguerre ensemble. Moreover, we delve into the asymptotic evaluation of monic orthogonal polynomials with respect to the semiclassical Laguerre weight, focusing on a special case. In doing so, we shed light on the properties and characteristics of these polynomials in the context of the ensemble. Furthermore, we explore the relation between the second-order differential equations satisfied by the monic orthogonal polynomials with respect to the semiclassical Laguerre weight and the tri-confluent Heun equations or the bi-confluent Heun equations.
Keywords: Hankel determinant, asymptotics
Mots-clés : Painlevé IV equation, Heun equation.
@article{TMF_2024_219_3_a2,
     author = {Dan Wang},
     title = {The~Hankel determinant for a~semiclassical {Laguerre} unitary ensemble, {Painlev\'e~IV} and {Heun} equations},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {440--461},
     year = {2024},
     volume = {219},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a2/}
}
TY  - JOUR
AU  - Dan Wang
TI  - The Hankel determinant for a semiclassical Laguerre unitary ensemble, Painlevé IV and Heun equations
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 440
EP  - 461
VL  - 219
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a2/
LA  - ru
ID  - TMF_2024_219_3_a2
ER  - 
%0 Journal Article
%A Dan Wang
%T The Hankel determinant for a semiclassical Laguerre unitary ensemble, Painlevé IV and Heun equations
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 440-461
%V 219
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a2/
%G ru
%F TMF_2024_219_3_a2
Dan Wang. The Hankel determinant for a semiclassical Laguerre unitary ensemble, Painlevé IV and Heun equations. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 3, pp. 440-461. http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a2/

[1] M. L. Mehta, Random Matrices, Elsevier, Amsterdam, 2004 | MR

[2] E. Basor, Y. Chen, L. Zhang, “PDEs satisfied by extreme eigenvalues distributions of GUE and LUE”, Random Matrices Theory Appl., 1:1 (2012), 1150003, 21 pp. | DOI | MR

[3] E. Basor, Y. Chen, T. Ehrhardt, “Painlevé V and time-dependent Jacobi polynomials”, J. Phys. A: Math. Theor., 43:1 (2010), 015204, 25 pp. | DOI | MR

[4] G. Sege, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 | MR | Zbl | Zbl

[5] Y. Chen, N. S. Haq, M. R. McKay, “Random matrix models, double-time Painlevé equations, and wireless relaying”, J. Math. Phys., 54:6 (2013), 063506, 55 pp. | DOI | MR

[6] Y. Chen, M. R. McKay, “Coulomb fluid, Painlevé transcendents and the information theory of MIMO systems”, IEEE Trans. Inform. Theory, 58:7 (2012), 4594–4634 | DOI | MR

[7] S. Lyu, Y. Chen, E. Fan, “Asymptotic gap probability distributions of the Gaussian unitary ensembles and Jacobi unitary ensembles”, Nucl. Phys. B, 926 (2018), 639–670 | DOI | MR

[8] C. Min, Y. Chen, “Gap probability distribution of the Jacobi unitary ensemble: an elementary treatment, from finite $n$ to double scaling”, Stud. Appl. Math., 140:2 (2018), 202–220 | DOI | MR

[9] Y. Chen, D. Dai, “Painelvé V and a Pollaczek–Jacobi type orthogonal polynomials”, J. Approx. Theory, 162:12 (2010), 2149–2167 | DOI | MR

[10] Y. Chen, L. Zhang, “Painlevé VI and the unitary Jacobi ensembles”, Stud. Appl. Math., 125:1 (2010), 91–112 | DOI | MR

[11] D. Dai, L. Zhang, “Painlevé VI and Hankel determinants for the generized Jacobi weight”, J. Phys. A: Math. Theor., 43:5 (2010), 055207, 14 pp. | DOI | MR

[12] E. Basor, Y. Chen, “Painlevé V and the distribution function of a discontinuous linear statistics in the Laguerre unitary ensembles”, J. Phys. A: Math. Theor., 42:3 (2009), 035203, 18 pp. | DOI | MR

[13] E. Basor, Y. Chen, “Perturbed Laguerre unitary ensembles, Hankel determinants, and information theory”, Math. Methods Appl. Sci., 38:18 (2015), 4840–4851 | DOI | MR

[14] S. Lyu, J. Griffin, Y. Chen, “The Hankel determinant associated with a singularly perturbed Laguerre unitary ensemble”, J. Nonlinear Math. Phys., 26:1 (2019), 24–53 | DOI | MR

[15] Y. Chen, M. V. Feigin, “Painlevé IV and degenerate Gaussian unitary ensembles”, J. Phys. A: Math. Gen., 39:40 (2006), 12381–12393 | DOI | MR

[16] Y. Chen, G. Pruessner, “Orthogonal polynomials with discontinuous weights”, J. Phys. A: Math. Gen., 38:12 (2005), L191–L198 | MR

[17] P. A. Clarkson, K. Jordaan, “The relationship between semiclassical Laguerre polynomials and the fourth Painlevé equation”, Constr. Approx., 39:1 (2014), 223–254 | DOI | MR

[18] Y. Chen, M. E. H. Ismail, “Ladder operators and differential equations for orthogonal polynomials”, J. Phys. A: Math. Gen., 30:22 (1997), 7817–7829 | DOI | MR

[19] Y. Chen, M. E. H. Ismail, “Thermodynamic relations of the Hermitian matrix ensembles”, J. Phys. A: Math. Gen., 30:19 (1997), 6633–6654 | DOI | MR

[20] W. C. Bauldry, “Estimate of the asymmetric Freud polynpomials on the real line”, J. Approx. Theory, 63:2 (1990), 225–237 | DOI | MR

[21] S. Belmehdi, A. Ronveaux, “Laguerre–Freud's equations for the recurrence coefficients of semi-classical orthogonal polynomials”, J. Approx. Theory, 76:3 (1994), 351–368 | DOI | MR

[22] S. Bonan, D. S. Clark, “Estimates of the orthogonal polynomials with weight $\exp(-x^m)$, $m$ an even positive integer”, J. Approx. Theory, 46:4 (1986), 408–410 | DOI | MR

[23] S. Bonan, D. S. Clark, “Estimates of the Hermite and the Freud polynomials”, J. Approx. Theory, 63:2 (1990), 210–224 | DOI | MR

[24] S. Bonan, P. Nevai, “Orthogonal polynomials and their derivatives. I”, J. Approx. Theory, 40:2 (1984), 134–147 | DOI | MR

[25] F. J. Dyson, “Statistical theory of the energy levels of complex systems. I”, J. Math. Phys., 3:1 (1962), 140–156 ; “II”, 157–165 ; “III”, 166–175 | DOI | DOI | DOI | MR

[26] E. B. Saff, V. Totik, Logarithmic Potentials with External Fields, Grundlehren der mathematischen Wissenschaften, 316, Springer, Berlin, Heidelberg, 1997 | DOI | MR

[27] C. Min, Y. Chen, “Painlevé IV, Chazy II, and asymptotics for recurrence coefficients of semi-classical Laguerre polynomials and their Hankel determinants”, Math. Methods Appl. Sci., 46:14 (2023), 15270–15284 | DOI

[28] Y. Chen, D. S. Lubinsky, “Smallest eigenvalues of Hankel matrices for exponential weights”, J. Math. Anal. Appl., 293:2 (2004), 476–495 | DOI | MR

[29] Y. Chen, N. Lawrence, “Small eigenvalues of large Hankel matrices”, J. Phys. A: Math. Gen., 32:42 (1999), 7305–7315 | DOI | MR

[30] Y. Chen, N. Lawrence, “On the linear statistics of Hermitian random matrices”, J. Phys. A: Math. Gen., 31:4 (1998), 1141–1152 | DOI | MR

[31] M. Chen, Y. Chen, “Singular linear statistics of the Laguerre unitary ensemble and Painlevé. III. Double scaling analysis”, J. Math. Phys., 56:6 (2015), 063506, 14 pp. | DOI | MR

[32] A. Ronveaux (ed.), Heun's Differential Equations, Oxford Univ. Press, Oxford, 1995 | MR | Zbl

[33] M. E. H. Ismail, Classical and Quantum Orthogonal Polynomials in One Variable, Encyclopedia of Mathematics and its Applications, 98, Cambridge Univ. Press, Cambridge, 2005 | DOI | MR