Translation-invariant Gibbs measures for the Ising–Potts model on a second-order Cayley tree
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 3, pp. 597-609 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a mixed-type model given by the three-state Ising–Potts model on a Cayley tree. A criterion for the existence of limit Gibbs measures for this model on an arbitrary-order Cayley tree is obtained. Translation-invariant Gibbs measures on a second-order Cayley tree are studied. The existence of a phase transition is proved: a range of parameter values is found in which there are one to seven Gibbs measures for the three-state Ising–Potts model.
Keywords: Cayley tree, Ising–Potts model, Gibbs measure, translation-invariant Gibbs measure.
Mots-clés : configuration
@article{TMF_2024_219_3_a10,
     author = {M. M. Rahmatullaev and B. M. Isakov},
     title = {Translation-invariant {Gibbs} measures for {the~Ising{\textendash}Potts} model on a~second-order {Cayley} tree},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {597--609},
     year = {2024},
     volume = {219},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a10/}
}
TY  - JOUR
AU  - M. M. Rahmatullaev
AU  - B. M. Isakov
TI  - Translation-invariant Gibbs measures for the Ising–Potts model on a second-order Cayley tree
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 597
EP  - 609
VL  - 219
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a10/
LA  - ru
ID  - TMF_2024_219_3_a10
ER  - 
%0 Journal Article
%A M. M. Rahmatullaev
%A B. M. Isakov
%T Translation-invariant Gibbs measures for the Ising–Potts model on a second-order Cayley tree
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 597-609
%V 219
%N 3
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a10/
%G ru
%F TMF_2024_219_3_a10
M. M. Rahmatullaev; B. M. Isakov. Translation-invariant Gibbs measures for the Ising–Potts model on a second-order Cayley tree. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 3, pp. 597-609. http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a10/

[1] S. Katsura, M. Takizava, “Bethe lattice and Bethe approximation”, Progr. Theor. Phys., 51:1 (1974), 82–98 | DOI

[2] C. J. Preston, Gibbs States on Countable Sets, Cambridge Tracts in Mathematics, 68, Cambridge Univ. Press, Cambridge, 2011 | MR

[3] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | MR

[4] N. N. Ganikhodzhaev, U. A. Rozikov, “Opisanie periodicheskikh krainikh gibbsovskikh mer nekotorykh modelei na dereve Keli”, TMF, 111:1 (1997), 109–117 | DOI | DOI | MR | Zbl

[5] U. A. Rozikov, M. M. Rakhmatullaev, “Opisanie slabo periodicheskikh mer Gibbsa modeli Izinga na dereve Keli”, TMF, 156:2 (2008), 292–302 | DOI | DOI | MR | Zbl

[6] U. A. Rozikov, M. M. Rakhmatullaev, “Slabo periodicheskie osnovnye sostoyaniya i mery Gibbsa dlya modeli Izinga s konkuriruyuschimi vzaimodeistviyami na dereve Keli”, TMF, 160:3 (2009), 507–516 | DOI | DOI | MR | Zbl

[7] M. M. Rakhmatullaev, Zh. D. Dekhkonov, “Slabo periodicheskie mery Gibbsa dlya modeli Izinga na dereve Keli poryadka $k=2$ ”, TMF, 206:2 (2021), 210–224 | DOI | DOI | MR

[8] C. Külske, U. A. Rozikov, R. M. Khakimov, “Description of translation-invariant splitting Gibbs measures for the Potts model on a Cayley tree”, J. Stat. Phys., 156:1 (2014), 189–200 | DOI | MR

[9] R. M. Khakimov, M. T. Makhammadaliev, “Translyatsionnaya invariantnost periodicheskikh mer Gibbsa dlya modeli Pottsa na dereve Keli”, TMF, 199:2 (2019), 291–301 | DOI | DOI | MR

[10] R. M. Khakimov, F. Kh. Khaidarov, “Translyatsionno-invariantnye i periodicheskie mery Gibbsa dlya modeli Pottsa na dereve Keli”, TMF, 189:2 (2016), 286–295 | DOI | DOI | MR

[11] M. M. Rakhmatullaev, “Clabo periodicheskie mery Gibbsa i osnovnye sostoyaniya dlya modeli Pottsa s konkuriruyuschimi vzaimodeistviyami na dereve Keli”, TMF, 176:3 (2013), 477–493 | DOI | DOI | MR | Zbl

[12] M. M. Rakhmatullaev, “Suschestvovanie slabo periodicheskikh mer Gibbsa dlya modeli Pottsa na dereve Keli”, TMF, 180:3 (2014), 307–317 | DOI | DOI | MR

[13] U. A. Rozikov, Gibbs measures in Biology and Physics: The Potts Model, World Sci., Singapore, 2022 | DOI

[14] H. Saygili, “Gibbs measures for the Potts–SOS model with three states of spin values”, Asian J. Current Research, 1:3 (2016), 114–121

[15] M. M. Rahmatullaev, M. M. Rasulova, “Extremality of translation-invariant Gibbs measures for the Potts–SOS model on the Cayley tree”, J. Stat. Mech. Theory Exp., 2021:7 (2021), 073201, 18 pp. | MR

[16] F. M. Mukhamedov, M. M. Rakhmatullaev, M. A. Rasulova, “Slabo periodicheskie osnovnye sostoyaniya dlya $\lambda$-modeli”, Ukr. matem. zhurn., 72:5 (2020), 667–678 | DOI | MR

[17] F. M. Mukhamedov, “Extremality of disordered phase of $\lambda$-model on Cayley trees”, Algoritms, 15:1 (2022), 18, 12 pp. | DOI

[18] M. M. Rakhmatullaev, B. M. Isakov, “Ob osnovnykh sostoyaniyakh modeli Izinga–Pottsa na dereve Keli”, Ufimsk. matem. zhurn., 15:1 (2023), 44–55 | DOI | MR

[19] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1982 | MR | Zbl

[20] N. Khatamov, R. Khakimov, “Translation-invariant Gibbs measures for the Blum–Kapel model on a Cayley tree”, Zhurn. matem. fiz., anal., geom., 15:2 (2019), 239–255 | MR

[21] N. M. Khatamov, “Ekstremalnost mer Gibbsa dlya modeli $HC$-Blyuma–Kapelya na dereve Keli”, Matem. zametki, 111:5 (2022), 762–777 | DOI | DOI | MR

[22] U. A. Rozikov, “Opisanie predelnykh gibbsovskikh mer dlya $\lambda$-modelei na reshetkakh Bete”, Sib. matem. zhurn., 39:2 (1998), 427–435 | DOI | MR | Zbl

[23] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR | MR | Zbl

[24] K. T. Leung, I. A. C. Mok, S. N. Seun, Polynomials and Equations, Hong Kong Univ. Press, Hong Kong, 1992

[25] V. V. Prasolov, Mnogochleny, MTsNMO, M., 2001 | DOI

[26] A. G. Kurosh, Kurs vysshei algebry, Nauka, M., 1968 | MR | MR | Zbl