@article{TMF_2024_219_3_a0,
author = {M. A. Bezuglov and A. I. Onischenko},
title = {Expansion of hypergeometric functions in terms of polylogarithms with a~nontrivial change of variables},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {391--421},
year = {2024},
volume = {219},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a0/}
}
TY - JOUR AU - M. A. Bezuglov AU - A. I. Onischenko TI - Expansion of hypergeometric functions in terms of polylogarithms with a nontrivial change of variables JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 391 EP - 421 VL - 219 IS - 3 UR - http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a0/ LA - ru ID - TMF_2024_219_3_a0 ER -
%0 Journal Article %A M. A. Bezuglov %A A. I. Onischenko %T Expansion of hypergeometric functions in terms of polylogarithms with a nontrivial change of variables %J Teoretičeskaâ i matematičeskaâ fizika %D 2024 %P 391-421 %V 219 %N 3 %U http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a0/ %G ru %F TMF_2024_219_3_a0
M. A. Bezuglov; A. I. Onischenko. Expansion of hypergeometric functions in terms of polylogarithms with a nontrivial change of variables. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 3, pp. 391-421. http://geodesic.mathdoc.fr/item/TMF_2024_219_3_a0/
[1] S. Weinzierl, Feynman integrals, arXiv: 2201.03593
[2] I. Dubovyk, J. Gluza, G. Somogyi, Mellin–Barnes Integrals: A Primer on Particle Physics Applications, Lecture Notes in Physics, 1008, Springer, Cham, 2022, arXiv: 2211.13733 | DOI
[3] V. A. Smirnov, Feynman Integral Calculus, Springer, Berlin, 2006 | DOI | MR
[4] A. V. Belitsky, A. V. Smirnov, V. A. Smirnov, “MB tools reloaded”, Nucl. Phys. B, 986 (2023), 116067, 15 pp., arXiv: 2211.00009 | DOI | MR
[5] B. Ananthanarayan, S. Banik, S. Friot, S. Ghosh, “Multiple series representations of $N$-fold Mellin–Barnes integrals”, Phys. Rev. Lett., 127:15 (2021), 151601, 6 pp., arXiv: 2012.15108 | DOI | MR
[6] M. Ochman, T. Riemann, “MBsums – a Mathematica package for the representation of Mellin–Barnes integrals by multiple sums”, Acta Phys. Polon. B, 46:11 (2015), 2117–2123, arXiv: 1511.01323 | DOI | MR
[7] A. V. Smirnov, V. A. Smirnov, “On the resolution of singularities of multiple Mellin–Barnes integrals”, Eur. Phys. J. C, 62:2 (2009), 445–449, arXiv: 0901.0386 | DOI | MR
[8] J. Gluza, K. Kajda, T. Riemann, “AMBRE – A Mathematica package for the construction of Mellin–Barnes representations for Feynman integrals”, Comput. Phys. Commun., 177:11 (2007), 879–893, arXiv: 0704.2423 | DOI | MR
[9] M. Czakon, “Automatized analytic continuation of Mellin–Barnes integrals”, Comput. Phys. Commun., 175:8 (2006), 559–571, arXiv: hep-ph/0511200 | DOI
[10] O. V. Tarasov, “Hypergeometric representation of the two-loop equal mass sunrise diagram”, Phys. Lett. B, 638:2–3 (2006), 195–201, arXiv: hep-ph/0603227 | DOI | MR
[11] R. N. Lee, “Space-time dimensionality $\mathscr D$ as complex variable: Calculating loop integrals using dimensional recurrence relation and analytical properties with respect to $\mathscr D$”, Nucl. Phys. B, 830:3 (2010), 474–492, arXiv: 0911.0252 | DOI | MR
[12] R. N. Lee, “DRA method: Powerful tool for the calculation of the loop integrals”, J. Phys.: Conf. Ser., 368 (2012), 012050, 7 pp., arXiv: 1203.4868 | DOI
[13] O. V. Tarasov, “Functional reduction of one-loop Feynman integrals with arbitrary masses”, JHEP, 06 (2022), 155, 47 pp., arXiv: 2203.00143 | DOI | MR
[14] M. A. Bezuglov, A. V. Kotikov, A. I. Onishchenko, “On series and integral representations of some NRQCD master integrals”, JETP Lett., 116:1 (2022), 61–69, arXiv: 2205.14115 | DOI
[15] M. A. Bezuglov, A. I. Onishchenko, “Non-planar elliptic vertex”, JHEP, 04 (2022), 045, 30 pp., arXiv: 2112.05096 | DOI | MR
[16] J. Blümlein, M. Saragnese, C. Schneider, “Hypergeometric structures in Feynman integrals”, Ann. Math. Artif. Intell., 91:5 (2023), 591–649, arXiv: 2111.15501 | DOI | MR
[17] S.-J. Matsubara-Heo, S. Mizera, S. Telen, “Four lectures on Euler integrals”, SciPost Phys. Lect. Notes, 75 (2023), 1–42, arXiv: 2306.13578 | DOI
[18] P. Vanhove, “Feynman integrals, toric geometry and mirror symmetry”, Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory, eds. J. Blumlein, C. Schneider, P. Paule, Springer, Cham, 2019, 415–458, arXiv: 1807.11466 | DOI | MR
[19] I. M. Gelfand, M. I. Graev, V. S. Retakh, “Obschie gipergeometricheskie sistemy uravnenii i ryady gipergeometricheskogo tipa”, UMN, 47:4(286) (1992), 3–82 | DOI | MR | Zbl
[20] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants, Birkhäuser, Boston, MA, 1994 | DOI | MR
[21] I. M. Gelfand, M. Kapranov, A. V. Zelevinsky, “Generalized Euler integrals and $A$-hypergeometric functions”, Adv. Math., 84:2 (1990), 255–271 | DOI | MR
[22] F. Beukers, Monodromy of A-hypergeometric functions, arXiv: 1101.0493
[23] M. Yu. Kalmykov, B. A. Kniehl, “Mellin–Barnes representations of Feynman diagrams, linear systems of differential equations, and polynomial solutions”, Phys. Lett. B, 714:1 (2012), 103–109, arXiv: 1205.1697 | DOI | MR
[24] L. de la Cruz, “Feynman integrals as A-hypergeometric functions”, JHEP, 12 (2019), 123, 44 pp., arXiv: 1907.00507 | DOI | MR
[25] R. P. Klausen, “Hypergeometric series representations of Feynman integrals by GKZ hypergeometric systems”, JHEP, 04 (2020), 121, 41 pp. | DOI | MR
[26] B. Ananthanarayan, S. Banik, S. Bera, S. Datta, “FeynGKZ: A Mathematica package for solving Feynman integrals using GKZ hypergeometric systems”, Comput. Phys. Commun., 287 (2023), 108699, 15 pp., arXiv: 2211.01285 | DOI
[27] A. I. Davydychev, M. Yu. Kalmykov, “Massive Feynman diagrams and inverse binomial sums”, Nucl. Phys. B, 699:1–2 (2004), 3–64, arXiv: hep-th/0303162 | DOI | MR
[28] M. Yu. Kalmykov, “Series and epsilon-expansion of the hypergeometric functions”, Nucl. Phys. B Proc. Suppl., 135 (2004), 280–284, arXiv: hep-th/0406269 | DOI
[29] M. Yu. Kalmykov, “Gauss hypergeometric function: reduction, $\epsilon$-expansion for integer/half-integer parameters and Feynman diagrams”, JHEP, 04 (2006), 056, 21 pp., arXiv: hep-th/0602028 | DOI | MR
[30] M. Y. Kalmykov, B. F. L. Ward, S. A. Yost, “On the all-order epsilon-expansion of generalized hypergeometric functions with integer values of parameters”, JHEP, 11 (2007), 009, 13 pp., arXiv: 0708.0803 | DOI | MR
[31] M. Yu. Kalmykov, B. A. Kniehl, “Towards all-order Laurent expansion of generalized hypergeometric functions around rational values of parameters”, Nucl. Phys. B, 809:3 (2009), 365–405, arXiv: 0807.0567 | DOI | MR
[32] D. Greynat, J. Sesma, “A new approach to the epsilon expansion of generalized hypergeometric functions”, Comput. Phys. Commun., 185:2 (2014), 472–478, arXiv: 1302.2423 | DOI
[33] D. Greynat, J. Sesma, G. Vulvert, Epsilon expansion of Appell and Kampé de Fériet functions, arXiv: 1310.7700
[34] D. Greynat, J. Sesma, G. Vulvert, “Derivatives of the Pochhammer and reciprocal Pochhammer symbols and their use in epsilon-expansions of Appell and Kampé de Fériet functions”, J. Math. Phys., 55:4 (2014), 043501, 16 pp. | DOI | MR
[35] S. Moch, P. Uwer, S. Weinzierl, “Nested sums, expansion of transcendental functions and multiscale multiloop integrals”, J. Math. Phys., 43:6 (2002), 3363–3386, arXiv: hep-ph/0110083 | DOI | MR
[36] S. Weinzierl, “Expansion around half-integer values, binomial sums, and inverse binomial sums”, J. Math. Phys., 45:7 (2004), 2656–2673, arXiv: hep-ph/0402131 | DOI | MR
[37] S. A. Yost, V. V. Bytev, M. Yu. Kalmykov, B. A. Kniehl, B. F. L. Ward, The epsilon expansion of Feynman diagrams via hypergeometric functions and differential reduction, arXiv: 1110.0210
[38] V. V. Bytev, M. Y. Kalmykov, B. A. Kniehl, “When epsilon-expansion of hypergeometric functions is expressible in terms of multiple polylogarithms: the two-variables examples”, PoS (LL2012), 2012, 029, 9 pp., arXiv: 1212.4719
[39] M. Kalmykov, V. Bytev, B. A. Kniehl, S.-O. Moch, B. F. L. Ward, S. A. Yost, “Hypergeometric functions and Feynman diagrams”, Anti-Differentiation and the Calculation of Feynman Amplitudes, eds. J. Blumlein, C. Schneider, Springer, Cham, 2021, 189–234, arXiv: 2012.14492 | DOI | MR
[40] S. Bera, “$\epsilon$-expansion of multivariable hypergeometric functions appearing in Feynman integral calculus”, Nucl. Phys. B, 989 (2023), 116145, 32 pp., arXiv: 2208.01000 | MR
[41] T. Huber, D. Maître, “HypExp: A Mathematica package for expanding hypergeometric functions around integer-valued parameters”, Comput. Phys. Commun., 175 (2006), 122–144, arXiv: hep-ph/0507094 | DOI | MR
[42] T. Huber, D. Maître, “HypExp 2, Expanding hypergeometric functions about half-integer parameters”, Comput. Phys. Commun., 178:10 (2008), 755–776, arXiv: 0708.2443 | DOI | MR
[43] S. Moch, P. Uwer, “XSummer – Transcendental functions and symbolic summation in Form”, Comput. Phys. Commun., 174:9 (2006), 759–770, arXiv: math-ph/0508008 | DOI
[44] S. Weinzierl, “Symbolic expansion of transcendental functions”, Comput. Phys. Commun., 145:3 (2002), 357–370, arXiv: math-ph/0201011 | DOI | MR
[45] J. Ablinger, J. Blümlein, C. Schneider, “Analytic and algorithmic aspects of generalized harmonic sums and polylogarithms”, J. Math. Phys., 54:8 (2013), 082301, 74 pp., arXiv: 1302.0378 | DOI | MR
[46] Z.-W. Huang, J. Liu, “NumExp: Numerical epsilon expansion of hypergeometric functions”, Comput. Phys. Commun., 184:8 (2013), 1973–1980, arXiv: 1209.3971 | DOI
[47] S. Bera, MultiHypExp: A Mathematica package for expanding multivariate hypergeometric functions in terms of multiple polylogarithms, arXiv: 2306.11718
[48] A. B. Goncharov, “Multiple polylogarithms, cyclotomy and modular complexes”, Math. Res. Lett., 5:4 (1998), 497–516 | DOI | MR
[49] A. B. Goncharov, Multiple polylogarithms and mixed Tate motives, arXiv: math/0103059
[50] A. B. Goncharov, “Galois symmetries of fundamental groupoids and noncommutative geometry”, Duke Math. J., 128:2 (2005), 209–284 | DOI | MR
[51] A. B. Goncharov, M. Spradlin, C. Vergu, A. Volovich, “Classical polylogarithms for amplitudes and Wilson loops”, Phys. Rev. Lett., 105:15 (2010), 151605, 4 pp. | DOI | MR
[52] C. Duhr, “Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes”, JHEP, 2012:8 (2012), 43, 45 pp. | DOI | MR
[53] C. Duhr, “Mathematical aspects of scattering amplitudes”, Journeys Through the Precision Frontier: Amplitudes for Colliders, Proceedings of the 2014 Theoretical Advanced Study Institute in Elementary Particle Physics (Boulder, Colorado, June 2–27, 2014), eds. L. Dixon, F. Petriello, World Sci., Singapore, 2016, 419–476 | DOI
[54] C. Duhr, H. Gangl, J. R. Rhodes, “From polygons and symbols to polylogarithmic functions”, JHEP, 10 (2012), 075, 77 pp. | DOI | MR
[55] J. Vollinga, S. Weinzierl, “Numerical evaluation of multiple polylogarithms”, Comput. Phys. Commun., 167:3 (2005), 177–194, arXiv: hep-ph/0410259 | DOI | MR
[56] E. Panzer, “Algorithms for the symbolic integration of hyperlogarithms with applications to Feynman integrals”, Comput. Phys. Commun., 188 (2015), 148–166 | DOI
[57] C. Bogner, “MPL – A program for computations with iterated integrals on moduli spaces of curves of genus zero”, Comput. Phys. Commun., 203 (2016), 339–353, arXiv: 1510.04562 | DOI
[58] C. Duhr, F. Dulat, “PolyLogTools – polylogs for the masses”, JHEP, 8 (2019), 135, 56 pp. | DOI | MR
[59] L. Naterop, A. Signer, Y. Ulrich, “handyG–Rapid numerical evaluation of generalised polylogarithms in Fortran”, Comput. Phys. Commun., 253 (2020), 107165, 12 pp., arXiv: 1909.01656 | DOI | MR
[60] A. V. Kotikov, “Differential equations method. New technique for massive Feynman diagram calculation”, Phys. Lett. B, 254:1–2 (1991), 158–164 | DOI | MR
[61] A. V. Kotikov, “Differential equation method. The calculation of $N$-point Feynman diagrams”, Phys. Lett. B, 267:1 (1991), 123–127 | DOI | MR
[62] A. V. Kotikov, “Differential equations method: the calculation of vertex-type Feynman diagrams”, Phys. Lett. B, 259:3 (1991), 314–322 | DOI | MR
[63] E. Remiddi, “Differential equations for Feynman graph amplitudes”, Il Nuovo Cimento A, 110:12 (1997), 1435–1452 | DOI
[64] T. Gehrmann, E. Remiddi, “Differential equations for two-loop four-point functions”, Nucl. Phys. B, 580:1–2 (2000), 485–518 | DOI | MR
[65] M. Argeri, P. Mastrolia, “Feynman diagrams and differential equations”, Internat. J. Modern Phys. A, 22:24 (2007), 4375–4436 | DOI | MR
[66] J. M. Henn, “Lectures on differential equations for feynman integrals”, J. Phys. A: Math. Theor., 48:15 (2015), 153001, 35 pp. | DOI | MR
[67] J. M. Henn, “Multiloop integrals in dimensional regularization made simple”, Phys. Rev. Lett., 110:25 (2013), 251601, 4 pp. ; Erratum, 111:3, 039902, 1 pp. | DOI
[68] R. N. Lee, “Reducing differential equations for multiloop master integrals”, JHEP, 2015:04 (2015), 108, 26 pp., arXiv: 1411.0911 | DOI | MR
[69] R. N. Lee, A. A. Pomeransky, Normalized Fuchsian form on Riemann sphere and differential equations for multiloop integrals, arXiv: 1707.07856
[70] V. V. Bytev, M. Yu. Kalmykov, B. A. Kniehl, “HYPERDIRE, HYPERgeometric functions DIfferential REduction: MATHEMATICA-based packages for differential reduction of generalized hypergeometric functions ${}_pF_{p-1}, F_1, F_2, F_3, F_4$”, Comput. Phys. Commun., 184:10 (2013), 2332–2342, arXiv: 1105.3565 | DOI | MR
[71] V. V. Bytev, B. A. Kniehl, “HYPERDIRE HYPERgeometric functions DIfferential REduction: Mathematica-based packages for the differential reduction of generalized hypergeometric functions: Horn-type hypergeometric functions of two variables”, Comput. Phys. Commun., 189 (2015), 128–154, arXiv: 1309.2806 | DOI | MR
[72] V. V. Bytev, M. Yu. Kalmykov, S.-O. Moch, “HYPERgeometric functions DIfferential REduction (HYPERDIRE): MATHEMATICA based packages for differential reduction of generalized hypergeometric functions: $F_D$ and $F_S$ Horn-type hypergeometric functions of three variables”, Comput. Phys. Commun., 185:11 (2014), 3041–3058, arXiv: 1312.5777 | DOI
[73] V. V. Bytev, B. A. Kniehl, “HYPERDIRE–HYPERgeometric functions DIfferential REduction: Mathematica-based packages for the differential reduction of generalized hypergeometric functions: Lauricella function $F_C$ of three variables”, Comput. Phys. Commun., 206 (2016), 78–83, arXiv: 1602.00917 | DOI | MR
[74] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Mir, Nauka, 1973 | MR
[75] M. J. Schlosser, “Multiple hypergeometric series: Appell series and beyond”, Computer Algebra in Quantum Field Theory, eds. C. Schneider, J. Blümlein, Springer, Vienna, 2013, 305–324, arXiv: 1305.1966 | DOI | MR
[76] C. Koutschan, “Advanced applications of the holonomic systems approach”, ACM Commun. Comput. Algebra, 43:3–4 (2010), 119, ? pp. | DOI
[77] F. A. Berends, M. Buza, M. Böhm, R. Scharf, “Closed expressions for specific massive multiloop self-energy integrals”, Z. Phys. C, 63:2 (1994), 227–234 | DOI
[78] R. N. Lee, A. A. Pomeransky, “Differential equations, recurrence relations, and quadratic constraints for $L$-loop two-point massive tadpoles and propagators”, JHEP, 2019 (2019), 027, 26 pp., arXiv: 1904.12496 | DOI | MR
[79] C. Vergu, Polylogarithms and physical applications, Notes for the Summer School “Polylogarithms as a Bridge between Number Theory and Particle Physics” (Durham University, UK, July 3–13, 2013), eds. H. Gangl, P. Heslop, G. Travaglini, 51 pp.
[80] J. Ablinger, J. Blümlein, C. Schneider, “Harmonic sums and polylogarithms generated by cyclotomic polynomials”, J. Math. Phys., 52:10 (2011), 102301, 52 pp., arXiv: 1105.6063 | DOI | MR
[81] J. Ablinger, J. Blümlein, C. Schneider, “Generalized harmonic, cyclotomic, and binomial sums, their polylogarithms and special numbers”, J. Phys. Conf. Ser., 523 (2014), 012060, 11 pp., arXiv: 1310.5645 | DOI
[82] B. A. Kniehl, A. F. Pikelner, O. L. Veretin, “Three-loop effective potential of general scalar theory via differential equations”, Nucl. Phys. B, 937 (2018), 533–549, arXiv: 1810.07476 | DOI | MR
[83] R. N. Lee, “Libra: A package for transformation of differential systems for multiloop integrals”, Comput. Phys. Commun., 267 (2021), 108058, 17 pp., arXiv: 2012.00279 | DOI | MR
[84] M. Prausa, “epsilon: A tool to find a canonical basis of master integrals”, Comput. Phys. Commun., 219 (2017), 361–376, arXiv: 1701.00725 | DOI | MR
[85] O. Gituliar, V. Magerya, “Fuchsia: A tool for reducing differential equations for Feynman master integrals to epsilon form”, Comput. Phys. Commun., 219 (2017), 329–338, arXiv: 1701.04269 | DOI | MR