Mots-clés : configuration
@article{TMF_2024_219_2_a9,
author = {R. M. Khakimov and B. Z. Tozhiboev},
title = {Gibbs measures for fertile models with hard-core interactions},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {335--351},
year = {2024},
volume = {219},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a9/}
}
R. M. Khakimov; B. Z. Tozhiboev. Gibbs measures for fertile models with hard-core interactions. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 335-351. http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a9/
[1] R. Bekster, Tochno reshaemye modeli v statisticheskoi mekhanike, Mir, M., 1985 | MR | MR | Zbl
[2] F. P. Kelly, “Loss networks”, Ann. Appl. Probab., 1:3 (1991), 319–378 | DOI | MR
[3] Kh.-O. Georgi, Gibbsovskie mery i fazovye perekhody, Mir, M., 1992 | DOI | MR | MR | Zbl
[4] K. Preston, Gibbsovskie sostoyaniya na schetnykh mnozhestvakh, Mir, M., 1977 | MR
[5] Ya. G. Sinai, Teoriya fazovykh perekhodov. Strogie rezultaty, Nauka, M., 1980 | MR | MR | Zbl
[6] U. A. Rozikov, Gibbs Measures on Cayley Trees, World Sci., Singapore, 2013 | DOI | MR
[7] G. R. Brightwell, P. Winkler, “Hard constraints and the Bethe lattice: adventures at the interface of combinatorics and statistical physics”, Proceedings of the International Congress of Mathematicians (Beijing, China, August 20–28, 2002), v. III, Invited Lectures, ed. T. Li, Higher Education Press, Beijing, 2002, 605–624 | MR
[8] D. Galvin, J. Kahn, “On phase transition in the hard-core model on $\mathbb Z^d$”, Combin. Probab. Comput., 13:2 (2004), 137–164 | DOI | MR
[9] A. E. Mazel', Yu. M. Suhov, “Random surfaces with two-sided constraints: an application of the theory of dominant ground states”, J. Stat. Phys., 64:1–2 (1991), 111–134 | DOI | MR
[10] U. A. Rozikov, R. M. Khakimov, M. T. Makhammadaliev, “Periodicheskie mery Gibbsa dlya NS-modeli s dvumya sostoyaniyami na dereve Keli”, Nauka – tekhnologiya – obrazovanie – matematika – meditsina, Sovremennaya matematika. Fundamentalnye napravleniya, 68, no. 1, Rossiiskii universitet druzhby narodov, M., 2022, 95–109 | DOI | MR
[11] G. R. Brightwell, P. Winkler, “Graph homomorphisms and phase transitions”, J. Combin. Theory Ser. B, 77:2 (1999), 221–262 | DOI | MR
[12] Yu. M. Suhov, U. A. Rozikov, “A hard-core model on a Cayley tree: an example of a loss network”, Queueing Syst., 46:1–2 (2004), 197–212 | DOI | MR
[13] J. Martin, U. Rozikov, Yu. Suhov, “A three state hard-core model on a Cayley tree”, J. Nonlinear Math. Phys., 12:3 (2005), 432–448 | DOI | MR
[14] U. A. Rozikov, Sh. A. Shoyusupov, “Plodorodnye HC-modeli s tremya sostoyaniyami na dereve Keli”, TMF, 156:3 (2008), 412–424 | DOI | DOI | MR | Zbl
[15] R. M. Khakimov, “Translyatsionno-invariantnye mery Gibbsa dlya plodorodnykh HC-modelei s tremya sostoyaniyami na dereve Keli”, TMF, 183:3 (2015), 441–449 | DOI | DOI | MR
[16] U. A. Rozikov, R. M. Khakimov, “Gibbs measures for the fertile three-state hard core models on a Cayley tree”, Queueing Syst., 81:1 (2015), 49–69 | DOI | MR
[17] S. Kissel, C. Külske, U. A. Rozikov, “Hard-core and soft-core Widom–Rowlinson models on Cayley trees”, J. Stat. Mech.: Theory Exp., 2019:4 (2019), P043204, 22 pp. | DOI | MR
[18] R. M. Khakimov, K. O. Umirzakova, “Krainost edinstvennoi translyatsionno-invariantnoi mery Gibbsa dlya modelei ‘hard core’ na dereve Keli poryadka $k=3$”, TMF, 206:1 (2021), 112–124 | DOI | DOI | MR
[19] R. M. Khakimov, “The uniqueness of the translation-invariant Gibbs measure for four state HC-models on a Cayley tree”, Zhurn. SFU. Ser. Matem. i fiz., 8:2 (2015), 165–172 | DOI | MR
[20] R. M. Khakimov, “Mery Gibbsa dlya plodorodnykh modelei zhestkoi serdtseviny na dereve Keli”, TMF, 186:2 (2016), 340–352 | DOI | MR
[21] L. V. Bogacheve, U. A. Rozikov, “On the uniqueness of Gibbs measure in the Potts model on a Cayley tree with external field”, J. Stat. Mech.: Theory Exp., 2019:7 (2019), 073205, 76 pp. | DOI | MR
[22] N. N. Ganikhodzhaev, U. A. Rozikov, “Opisanie periodicheskikh krainikh gibbsovskikh mer nekotorykh modelei na dereve Keli”, TMF, 111:1 (1997), 109–117 | DOI | DOI | MR | Zbl
[23] U. A. Rozikov, R. M. Khakimov, “Periodicheskie mery Gibbsa dlya modeli Pottsa na dereve Keli”, TMF, 175:2 (2013), 300–312 | DOI | DOI | MR | Zbl