Self-gravitating Higgs field of scalar charge
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 299-314 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the self-gravitating Higgs field of a scalar charge. We show that in the zeroth and first approximation in the smallness of the scalar charge, the gravitational field of the scalar charge is described by the Schwarzschild–de Sitter metric with a cosmological constant determined by the vacuum potential of the Higgs field. An equation for the perturbation of the vacuum potential is obtained and studied. Particular exact solutions of the field equation are given. It is shown that in the case of a naked singularity, solutions of the field equation have the character of microscopic oscillations with a Compton wavelength. Asymptotic limit cases of the behavior of solutions are studied and their comparative analysis is carried out in relation to the Fisher solution. The averaging of microscopic oscillations of the scalar field is carried out and it it shown that at $\Lambda>0$ they make a negative contribution to the macroscopic energy of the scalar field, reducing the observed value of the black hole mass. A computer simulation of a scalar field demonstrates various types of the behavior of solutions.
Keywords: scalar-charged Black hole, scalar Higgs field, asymptotic behavior, macroscopic characteristics.
@article{TMF_2024_219_2_a7,
     author = {Yu. G. Ignat'ev},
     title = {Self-gravitating {Higgs} field of scalar charge},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {299--314},
     year = {2024},
     volume = {219},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a7/}
}
TY  - JOUR
AU  - Yu. G. Ignat'ev
TI  - Self-gravitating Higgs field of scalar charge
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 299
EP  - 314
VL  - 219
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a7/
LA  - ru
ID  - TMF_2024_219_2_a7
ER  - 
%0 Journal Article
%A Yu. G. Ignat'ev
%T Self-gravitating Higgs field of scalar charge
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 299-314
%V 219
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a7/
%G ru
%F TMF_2024_219_2_a7
Yu. G. Ignat'ev. Self-gravitating Higgs field of scalar charge. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 299-314. http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a7/

[1] Yu. G. Ignat'ev, “Formation of supermassive nuclei of black holes in the early Universe by the mechanism of scalar-gravitational instability. I. Local picture”, Grav. Cosmol., 29:4 (2023), 327–344, arXiv: 2308.03192 | DOI | MR

[2] Yu. G. Ignat'ev, “Formation of supermassive nuclei of Black holes in the early Universe by the mechanism of scalar-gravitational instability. II. The evolution of localized spherical perturbations”, Grav. Cosmol., 30:1 (2023), 40–47, arXiv: 2311.09926

[3] Yu. G. Ignat'ev, “Formation of supermassive nuclei of Black holes in the early Universe by the mechanism of scalar-gravitational instability. III. Large scale picture”, Grav. Cosmol., 30:2 (2024), to appear, arXiv: 2312.00607

[4] L. D. Landau, E. M. Lifshits, Teoreticheskaya fizika, v. 2, Teoriya polya, Fizmatlit, M., 2006 | MR

[5] I. Z. Fisher, “Skalyarnoe mezostaticheskoe pole s uchetom gravitatsionnykh effektov”, ZhETF, 18:7 (1948), 636–649, arXiv: gr-qc/9911008

[6] K. A. Bronnikov, J. C. Fabris, “Regular phantom black holes”, Phys. Rev. Lett., 96:25 (2006), 251101, 4 pp., arXiv: gr-qc/0511109 | DOI | MR

[7] K. A. Bronnikov, S. G. Rubin, Lektsii po gravitatsii i kosmologii, MIFI, M., 2008

[8] K. A. Bronnikov, S. G. Rubin, Black Holes, Cosmology and Extra Dimensions, World Sci., Singapore, 2013 | DOI | Zbl

[9] Yu. G. Ignat'ev, “Scalarly charged particles and interparticle interaction with the Higgs potential”, Grav. Cosmol., 29:3 (2023), 213–219, arXiv: 2307.13767 | DOI | MR

[10] A. S. Eddington, The Mathematical Theory of Relativity, Cambridge Univ. Press, Cambridge, 1960 | MR

[11] W. Hahn, “On linear geometric difference equations with accessory parameters”, Funkcial. Ekvac., 14 (1971), 73–78 | MR

[12] Yu. G. Ignatev, A. R. Samigullina, “Usrednenie uravnenii standartnoi kosmologicheskoi modeli po bystrym ostsillyatsiyam”, Izv. vuzov. Fizika, 60:7 (2017), 77–83 | DOI

[13] Yu. G. Ignat'ev, D. Yu. Ignatyev, A. R. Samigullina, “A macroscopic view of the standard cosmological model”, Grav. Cosmol., 24:2 (2018), 148–153 | DOI | MR