On the constrained $q$-mKP hierarchy: Additional symmetry and a hidden Virasoro algebraic structure
Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 287-298 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct the additional symmetry of the constrained $q$-mKP hierarchy. The new modified operator is introduced. The flows and additional flows acting on the modified operator are given. The additional flows acting on the eigenfunction and the adjoint eigenfunction are presented. The hidden Virasoro algebraic structure in the additional symmetry of the constrained $q$-mKP hierarchy is given.
Keywords: constrained $q$-mKP hierarchy, additional symmetry, Virasoro algebra.
@article{TMF_2024_219_2_a6,
     author = {Song Li and Kelei Tian and Ying Xu and Ge Yi},
     title = {On the~constrained $q${-mKP} hierarchy: {Additional} symmetry and a~hidden {Virasoro} algebraic structure},
     journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
     pages = {287--298},
     year = {2024},
     volume = {219},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a6/}
}
TY  - JOUR
AU  - Song Li
AU  - Kelei Tian
AU  - Ying Xu
AU  - Ge Yi
TI  - On the constrained $q$-mKP hierarchy: Additional symmetry and a hidden Virasoro algebraic structure
JO  - Teoretičeskaâ i matematičeskaâ fizika
PY  - 2024
SP  - 287
EP  - 298
VL  - 219
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a6/
LA  - ru
ID  - TMF_2024_219_2_a6
ER  - 
%0 Journal Article
%A Song Li
%A Kelei Tian
%A Ying Xu
%A Ge Yi
%T On the constrained $q$-mKP hierarchy: Additional symmetry and a hidden Virasoro algebraic structure
%J Teoretičeskaâ i matematičeskaâ fizika
%D 2024
%P 287-298
%V 219
%N 2
%U http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a6/
%G ru
%F TMF_2024_219_2_a6
Song Li; Kelei Tian; Ying Xu; Ge Yi. On the constrained $q$-mKP hierarchy: Additional symmetry and a hidden Virasoro algebraic structure. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 287-298. http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a6/

[1] V. E. Zakharov (ed.), What is Integrability?, Springer Series in Nonlinear Dynamics, 448, Springer, Berlin, 1991 | MR

[2] N. J. Hitchin, G. B. Segal, R. S. Ward, Integrable Systems: Twistors, Loop Groups, and Riemann Surfaces, Oxford Graduate Texts in Mathematics, 4, Oxford Univ. Press, New York, 2013 | MR

[3] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, May 13 – 16, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR

[4] M. Jimbo, T. Miwa, “Solitons and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19:3 (1983), 943–1001 | DOI | MR | Zbl

[5] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, 26, World Sci., Singapore, 2003 | DOI | MR

[6] A. Klimyk, K. Schmüdgen, Quantum Groups and Their Represntaions, Springer, Berlin, 1997 | DOI | MR

[7] V. G. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002 | DOI | MR

[8] H. Exton, $q$-Hypergeometric Functions and Applications, Ellis Horwood, New York, 1983 | MR

[9] G. E. Andrews, $q$-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra, CBMS Regional Conference Series in Mathematics, 66, AMS, Providence, RI, 1986 | DOI | MR

[10] D. H. Zhang, “Quantum deformation of KdV hierarchies and their infinitely many conservation laws”, J. Phys. A: Math. Gen., 26:10 (1993), 2389–2407 | DOI | MR

[11] E. Frenkel, N. Reshetikhin, “Quantum affine algebras and deformations of the Virasoro and $\mathscr{W}$-algebras”, Commun. Math. Phys., 178:1 (1996), 237–264 | DOI | MR

[12] L. Haine, P. Iliev, “The bispectral property of a $q$-deformation of the Schur polynomials and the $q$-KdV hierarchy”, J. Phys. A: Math. Gen., 30:20 (1997), 7217–7227 | DOI | MR

[13] Y. Shu, J. Chen, L. Chen, “Bose–Einstein condensation of a $q$-deformed ideal Bose gas”, Phys. Lett. A, 292:6 (2002), 309–314 | DOI | MR

[14] J. Chen, Z. Zhang, G. Su, L. Chen, Y. Shu, “$q$-Generalized Bose–Einstein condensation based on Tsallis entropy”, Phys. Lett. A, 300:1 (2002), 65–70 | DOI | MR

[15] P. N. Swamy, “$q$-Deformed fermions”, Eur. Phys. J. B, 50 (2006), 291–294 | DOI

[16] S. Martínez, F. Pennini, A. Plastino, M. Portesi, “$q$-Thermostatistics and the analytical treatment of the ideal Fermi gas”, Phys. A, 332:1–4 (2004), 230–248 | DOI | MR

[17] M.-H. Tu, “$q$-Deformed KP hierarchy: its additional symmetries and infinitesimal Bäcklund transformations”, Lett. Math. Phys., 49:2 (1999), 95–103 | DOI | MR

[18] P. Iliev, “Tau function solutions to a $q$-deformation of the KP hierarchy”, Lett. Math. Phys., 44:3 (1998), 187–200 | DOI | MR

[19] P. Iliev, “$q$-KP hierarchy, bispectrality and Calogero–Moser systems”, J. Geom. Phys., 35:2–3 (2000), 157–182 | DOI | MR

[20] R. Lin, H. Peng, M. Mañas, “The $q$-deformed mKP hierarchy with self-consistent sources, Wronskian solutions and solitons”, J. Phys. A: Math. Theor., 43:43 (2010), 434022, 15 pp. | DOI | MR

[21] J. Cheng, “Miura and auto-Backlund transformations for the $q$-deformed KP and $q$-deformed modified KP hierarchies”, J. Nonlinear Math. Phys., 24:1 (2017), 7–19 | DOI | MR

[22] N. Li, J. Cheng, “The successive applications of two types of gauge transformations for the $q$-deformed modified Kadomtsev–Petviashvili hierarchy”, Z. Naturforsch. A, 73:4 (2018), 345–356

[23] J. He, Y. Li, Y. Cheng, “$q$-Deformed KP hierarchy and $q$-deformed constrained KP hierarchy”, SIGMA, 2 (2006), 060, 32 pp. | MR

[24] H. Chen, L. Geng, N. Li, J. Cheng, “The gauge transformations of the constrained $q$-deformed modified KP hierarchy and their relations with the additional symmetries”, Anal. Math. Phys., 10:4 (2020), 79, 15 pp. | DOI | MR

[25] L. Geng, H. Chen, N. Li, J. Cheng, “The gauge transformations of the constrained $q$-deformed KP hierarchy”, Modern Phys. Lett. B, 32:16 (2018), 1850176, 14 pp. | DOI | MR

[26] M. Fukuma, H. Kawai, R. Nakayama, “Infinite dimensional Grassmanian structure of two-dimensional quantum gravity”, Commun. Math. Phys., 143 (1992), 371–403 | DOI

[27] C. Qian, C. Li, “Virasoro symmetry of the constrained multi-component $q$-KP and $q$-mKP hierarchies”, Rep. Math. Phys., 88:2 (2021), 271–293 | DOI | MR