@article{TMF_2024_219_2_a6,
author = {Song Li and Kelei Tian and Ying Xu and Ge Yi},
title = {On the~constrained $q${-mKP} hierarchy: {Additional} symmetry and a~hidden {Virasoro} algebraic structure},
journal = {Teoreti\v{c}eska\^a i matemati\v{c}eska\^a fizika},
pages = {287--298},
year = {2024},
volume = {219},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a6/}
}
TY - JOUR AU - Song Li AU - Kelei Tian AU - Ying Xu AU - Ge Yi TI - On the constrained $q$-mKP hierarchy: Additional symmetry and a hidden Virasoro algebraic structure JO - Teoretičeskaâ i matematičeskaâ fizika PY - 2024 SP - 287 EP - 298 VL - 219 IS - 2 UR - http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a6/ LA - ru ID - TMF_2024_219_2_a6 ER -
%0 Journal Article %A Song Li %A Kelei Tian %A Ying Xu %A Ge Yi %T On the constrained $q$-mKP hierarchy: Additional symmetry and a hidden Virasoro algebraic structure %J Teoretičeskaâ i matematičeskaâ fizika %D 2024 %P 287-298 %V 219 %N 2 %U http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a6/ %G ru %F TMF_2024_219_2_a6
Song Li; Kelei Tian; Ying Xu; Ge Yi. On the constrained $q$-mKP hierarchy: Additional symmetry and a hidden Virasoro algebraic structure. Teoretičeskaâ i matematičeskaâ fizika, Tome 219 (2024) no. 2, pp. 287-298. http://geodesic.mathdoc.fr/item/TMF_2024_219_2_a6/
[1] V. E. Zakharov (ed.), What is Integrability?, Springer Series in Nonlinear Dynamics, 448, Springer, Berlin, 1991 | MR
[2] N. J. Hitchin, G. B. Segal, R. S. Ward, Integrable Systems: Twistors, Loop Groups, and Riemann Surfaces, Oxford Graduate Texts in Mathematics, 4, Oxford Univ. Press, New York, 2013 | MR
[3] E. Date, M. Kashiwara, M. Jimbo, T. Miwa, “Transformation groups for soliton equations”, Nonlinear Integrable Systems – Classical Theory and Quantum Theory (Kyoto, Japan, May 13 – 16, 1981), eds. M. Jimbo, T. Miwa, World Sci., Singapore, 1983, 39–119 | MR
[4] M. Jimbo, T. Miwa, “Solitons and infinite dimensional Lie algebras”, Publ. Res. Inst. Math. Sci., 19:3 (1983), 943–1001 | DOI | MR | Zbl
[5] L. A. Dickey, Soliton Equations and Hamiltonian Systems, Advanced Series in Mathematical Physics, 26, World Sci., Singapore, 2003 | DOI | MR
[6] A. Klimyk, K. Schmüdgen, Quantum Groups and Their Represntaions, Springer, Berlin, 1997 | DOI | MR
[7] V. G. Kac, P. Cheung, Quantum Calculus, Springer, New York, 2002 | DOI | MR
[8] H. Exton, $q$-Hypergeometric Functions and Applications, Ellis Horwood, New York, 1983 | MR
[9] G. E. Andrews, $q$-Series: Their Development and Application in Analysis, Number Theory, Combinatorics, Physics, and Computer Algebra, CBMS Regional Conference Series in Mathematics, 66, AMS, Providence, RI, 1986 | DOI | MR
[10] D. H. Zhang, “Quantum deformation of KdV hierarchies and their infinitely many conservation laws”, J. Phys. A: Math. Gen., 26:10 (1993), 2389–2407 | DOI | MR
[11] E. Frenkel, N. Reshetikhin, “Quantum affine algebras and deformations of the Virasoro and $\mathscr{W}$-algebras”, Commun. Math. Phys., 178:1 (1996), 237–264 | DOI | MR
[12] L. Haine, P. Iliev, “The bispectral property of a $q$-deformation of the Schur polynomials and the $q$-KdV hierarchy”, J. Phys. A: Math. Gen., 30:20 (1997), 7217–7227 | DOI | MR
[13] Y. Shu, J. Chen, L. Chen, “Bose–Einstein condensation of a $q$-deformed ideal Bose gas”, Phys. Lett. A, 292:6 (2002), 309–314 | DOI | MR
[14] J. Chen, Z. Zhang, G. Su, L. Chen, Y. Shu, “$q$-Generalized Bose–Einstein condensation based on Tsallis entropy”, Phys. Lett. A, 300:1 (2002), 65–70 | DOI | MR
[15] P. N. Swamy, “$q$-Deformed fermions”, Eur. Phys. J. B, 50 (2006), 291–294 | DOI
[16] S. Martínez, F. Pennini, A. Plastino, M. Portesi, “$q$-Thermostatistics and the analytical treatment of the ideal Fermi gas”, Phys. A, 332:1–4 (2004), 230–248 | DOI | MR
[17] M.-H. Tu, “$q$-Deformed KP hierarchy: its additional symmetries and infinitesimal Bäcklund transformations”, Lett. Math. Phys., 49:2 (1999), 95–103 | DOI | MR
[18] P. Iliev, “Tau function solutions to a $q$-deformation of the KP hierarchy”, Lett. Math. Phys., 44:3 (1998), 187–200 | DOI | MR
[19] P. Iliev, “$q$-KP hierarchy, bispectrality and Calogero–Moser systems”, J. Geom. Phys., 35:2–3 (2000), 157–182 | DOI | MR
[20] R. Lin, H. Peng, M. Mañas, “The $q$-deformed mKP hierarchy with self-consistent sources, Wronskian solutions and solitons”, J. Phys. A: Math. Theor., 43:43 (2010), 434022, 15 pp. | DOI | MR
[21] J. Cheng, “Miura and auto-Backlund transformations for the $q$-deformed KP and $q$-deformed modified KP hierarchies”, J. Nonlinear Math. Phys., 24:1 (2017), 7–19 | DOI | MR
[22] N. Li, J. Cheng, “The successive applications of two types of gauge transformations for the $q$-deformed modified Kadomtsev–Petviashvili hierarchy”, Z. Naturforsch. A, 73:4 (2018), 345–356
[23] J. He, Y. Li, Y. Cheng, “$q$-Deformed KP hierarchy and $q$-deformed constrained KP hierarchy”, SIGMA, 2 (2006), 060, 32 pp. | MR
[24] H. Chen, L. Geng, N. Li, J. Cheng, “The gauge transformations of the constrained $q$-deformed modified KP hierarchy and their relations with the additional symmetries”, Anal. Math. Phys., 10:4 (2020), 79, 15 pp. | DOI | MR
[25] L. Geng, H. Chen, N. Li, J. Cheng, “The gauge transformations of the constrained $q$-deformed KP hierarchy”, Modern Phys. Lett. B, 32:16 (2018), 1850176, 14 pp. | DOI | MR
[26] M. Fukuma, H. Kawai, R. Nakayama, “Infinite dimensional Grassmanian structure of two-dimensional quantum gravity”, Commun. Math. Phys., 143 (1992), 371–403 | DOI
[27] C. Qian, C. Li, “Virasoro symmetry of the constrained multi-component $q$-KP and $q$-mKP hierarchies”, Rep. Math. Phys., 88:2 (2021), 271–293 | DOI | MR